1.十字相乘法用法及其作用分解公因式有时需要用到的.
十字相乘法虽然比较难学,但是一旦学会了它,用它来解题,会给我们带来很多方便,以下是我对十字相乘法提出的一些个人见解.1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数.2、十字相乘法的用处:(1)用十字相乘法来分解因式.(2)用十字相乘法来解一元二次方程.3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错.4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单.2、十字相乘法只适用于二次三项式类型的题目.3、十字相乘法比较难学.5、十字相乘法解题实例:1)、用十字相乘法解一些简单常见的题目 例1把m?+4m-12分解因式 分析:本题中常数项-12可以分为-1*12,-2*6,-3*4,-4*3,-6*2,-12*1当-12分成-2*6时,才符合本题 因为 1 -2 1 ╳ 6 所以m?+4m-12=(m-2)(m+6) 例2把5x?+6x-8分解因式 分析:本题中的5可分为1*5,-8可分为-1*8,-2*4,-4*2,-8*1.当二次项系数分为1*5,常数项分为-4*2时,才符合本题 因为 1 2 5 ╳ -4 所以5x?+6x-8=(x+2)(5x-4) 例3解方程x?-8x+15=0 分析:把x?-8x+15看成关于x的一个二次三项式,则15可分成1*15,3*5.因为 1 -3 1 ╳ -5 所以原方程可变形(x-3)(x-5)=0 所以x1=3 x2=5 例4、解方程 6x?-5x-25=0 分析:把6x?-5x-25看成一个关于x的二次三项式,则6可以分为1*6,2*3,-25可以分成-1*25,-5*5,-25*1.因为 2 -5 3 ╳ 5 所以 原方程可变形成(2x-5)(3x+5)=0 所以 x1=5/2 x2=-5/3 2)、用十字相乘法解一些比较难的题目 例5把14x?-67xy+18y?分解因式 分析:把14x?-67xy+18y?看成是一个关于x的二次三项式,则14可分为1*14,2*7,18y?可分为y.18y ,2y.9y ,3y.6y 因为 2 -9y 7 ╳ -2y 所以 14x?-67xy+18y?= (2x-9y)(7x-2y) 例6 把10x?-27xy-28y?-x+25y-3分解因式 分析:在本题中,要把这个多项式整理成二次三项式的形式 解法一、10x?-27xy-28y?-x+25y-3 =10x?-(27y+1)x -(28y?-25y+3) 4y -3 7y ╳ -1 =10x?-(27y+1)x -(4y-3)(7y -1) =[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1) 5 ╳ 4y - 3 =(2x -7y +1)(5x +4y -3) 说明:在本题中先把28y?-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把10x?-(27y+1)x -(4y-3)(7y -1)分解为[2x -(7y -1)][5x +(4y -3)] 解法二、10x?-27xy-28y?-x+25y-3 =(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y =[(2x -7y)+1] [(5x -4y)-3] 5 ╳ 4y =(2x -7y+1)(5x -4y -3) 2 x -7y 1 5 x - 4y ╳ -3 说明:在本题中先把10x?-27xy-28y?用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解为[(2x -7y)+1] [(5x -4y)-3].例7:解关于x方程:- 3ax + 2a?–ab -b?=0 分析:2a?–ab-b?可以用十字相乘法进行因式分解 - 3ax + 2a?–ab -b?=0 - 3ax +(2a?–ab - )=0 - 3ax +(2a+b)(a-b)=0 1 -b 2 ╳ +b [x-(2a+b)][ x-(a-b)]=0 1 -(2a+b) 1 ╳ -(a-b) 所以 x1=2a+b x2=a-b 十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数.。
2.因式分解
把一个多项式化成了几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做吧这个多项式分解因式.因式分解和整式乘法的关系:可逆的变形(有些多项式可以因式分解,有些多项式不可以因式分解)步骤:1.能提公因式的要提公因式2.不能提公因式的就看它是否可用公式法3.分解因式必须分解到不能再分解为止提公因式法:1.系数找最大公约数2.字母找相同字母,指数为最低次幂十字相乘法,能把某些二次三项式分解因式.要务必注意各项系数的符号.十字相乘法使用时的注意:1.用来解决两者之间的比例问题.2.得出的比例关系是基数的比例关系.通俗方法:先将二次项分解成(1 X 二次项系数),将常数项分解成(1 X 常数项)。
3.十字相乘怎么用
十字相乘法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab的逆运算来进行因式分解。十字相乘法能把二次三项式分解因式(不一定在整数范围内)。
对于形如ax²+bx+c=(a1x+c1)(a2x+c2)的整式来说,方法的关键是把二次项系数a分解成两个因数a1,a2的积a1·a2,把常数项c分解成两个因数c1,c2的积c1·c2,并使a1c2+a2c1正好等于一次项的系数b,那么可以直接写成结果:ax²+bx+c=(a1x+c1)(a2x+c2)。在运用这种方法分解因式时,要注意观察,尝试,并体会,它的实质是二项式乘法的逆过程。
当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。基本式子:x²+(p+q)x+pq=(x+p)(x+q)。
4.十字相乘应该怎么用
十字相乘1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。 4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。
2、十字相乘法只适用于二次三项式类型的题目。3、十字相乘法比较难学。
5、十字相乘法解题实例: 1)、用十字相乘法解一些简单常见的题目 例1把m²+4m-12分解因式 分析:本题中常数项-12可以分为-1*12,-2*6,-3*4,-4*3,-6*2,-12*1当-12分成-2*6时,才符合本题 解:因为 1 -2 1 ╳ 6 所以m²+4m-12=(m-2)(m+6) 例2把5x²+6x-8分解因式 分析:本题中的5可分为1*5,-8可分为-1*8,-2*4,-4*2,-8*1。当二次项系数分为1*5,常数项分为-4*2时,才符合本题 解: 因为 1 2 5 ╳ -4 所以5x²+6x-8=(x+2)(5x-4) 例3解方程x²-8x+15=0 分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1*15,3*5。
解: 因为 1 -3 1 ╳ -5 所以原方程可变形(x-3)(x-5)=0 所以x1=3 x2=5 例4、解方程 6x²-5x-25=0 分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1*6,2*3,-25可以分成-1*25,-5*5,-25*1。 解: 因为 2 -5 3 ╳ 5 所以 原方程可变形成(2x-5)(3x+5)=0 所以 x1=5/2 x2=-5/3 2)、用十字相乘法解一些比较难的题目 例5把14x²-67xy+18y²分解因式 分析:把14x²-67xy+18y²看成是一个关于x的二次三项式,则14可分为1*14,2*7, 18y²可分为y.18y , 2y.9y , 3y.6y 解: 因为 2 -9y 7 ╳ -2y 所以 14x²-67xy+18y²= (2x-9y)(7x-2y) 例6 把10x²-27xy-28y²-x+25y-3分解因式 分析:在本题中,要把这个多项式整理成二次三项式的形式 解法一、10x²-27xy-28y²-x+25y-3 =10x²-(27y+1)x -(28y²-25y+3) 4y -3 7y ╳ -1 =10x²-(27y+1)x -(4y-3)(7y -1) =[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1) 5 ╳ 4y - 3 =(2x -7y +1)(5x +4y -3) 说明:在本题中先把28y²-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把10x²-(27y+1)x -(4y-3)(7y -1)分解为[2x -(7y -1)][5x +(4y -3)] 解法二、10x²-27xy-28y²-x+25y-3 =(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y =[(2x -7y)+1] [(5x -4y)-3] 5 ╳ 4y =(2x -7y+1)(5x -4y -3) 2 x -7y 1 5 x - 4y ╳ -3 说明:在本题中先把10x²-27xy-28y²用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解为[(2x -7y)+1] [(5x -4y)-3]. 例7:解关于x方程:x²- 3ax + 2a²–ab -b²=0 分析:2a²–ab-b²可以用十字相乘法进行因式分解 解:x²- 3ax + 2a²–ab -b²=0 x²- 3ax +(2a²–ab - b²)=0 x²- 3ax +(2a+b)(a-b)=0 1 -b 2 ╳ +b [x-(2a+b)][ x-(a-b)]=0 1 -(2a+b) 1 ╳ -(a-b) 所以 x1=2a+b x2=a-b。
5.十字相乘怎么用
十字相乘法能把某些二次三项式ax2+bx+c(a≠0)分解因式。
这种方法的关健是把二次项的系数a分解成两个因数a1,a2的积a1•a2,把常数项c分解成两个因数c1,c2的积c1•c2,并使a1c2+a2c1正好是一次项系数b,那么可以直接写成结果:ax2+bx+c=(a1x+c1)(a2x+c2),在运用这种方法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程。当首项系数不是1时,往往需要多次试验,务必注意各项系数的符号。
例:x2+2x-15
分析:常数项(-15)
6.怎么用十字相乘
十字相乘其实从字面上理解就是左右上下分开中间划一个十字,表示上和下相乘,但是必须注意加减是在统一条水平线上的,而且用完了它,你还可以再乘开来验算一下
十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
比如::(x-3)(x+5)=x^2+2x-15反之
x^2+2x-15=(x-3)(x+5)
x y
1 -3
1 5
把二次项系数拆成1=1*1,常数项拆成-15=-3*5,交错相乘和为一次项系数:1*5+1*(-3)=2