1.初一数学画辅助线的方法
作辅助线的方法和技巧
题中有角平分线,可向两边作垂线。
线段垂直平分线,可向两端把线连。
三角形中两中点,连结则成中位线。
三角形中有中线,延长中线同样长。
成比例,正相似,经常要作平行线。
圆外若有一切线,切点圆心把线连。
如果两圆内外切,经过切点作切线。
两圆相交于两点,一般作它公共弦。
是直径,成半圆,想做直角把线连。
作等角,添个圆,证明题目少困难。
辅助线,是虚线,画图注意勿改变。
图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。
平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。
斜边上面作高线,比例中项一大片。
半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。
弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。
还要作个内接圆,内角平分线梦圆
如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。
若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。
辅助线,是虚线,画图注意勿改变。
假如图形较分散,对称旋转去实验。
基本作图很关键,平时掌握要熟练。
解题还要多心眼,经常总结方法显。
切勿盲目乱添线,方法灵活应多变。
分析综合方法选,困难再多也会减。
2.数学画辅助线的原则
其实画辅助线的原则很简单,只要遵循两点主要原则就不会让你感觉无厘头了。
1.辅助线是为了将复杂的多边形或没有规则的立体图形变换为你熟知且有规则的三角形或四边形(如正方形、平行四边形、等腰或直角梯形等等)
2.辅助线是为了将复杂的问题简单化。它是图形中的一条过渡线,将已知的数据通过它转换到需要求解的图形中。
除了上面两点原则外,还有一种逆向思维的方法画辅助线,就是假设所求是已知的,让所求与已知数据产生关系必然要添加部分图中没有的线,那便是辅助线了~~
3.数学几何题应该怎样画辅助线啊
(1)按定义添辅助线:
如证明二直线垂直可延长使它们 相交后证交角为90°,
证线段倍半关系可倍线段取中点或半线段加倍,
证角的倍半关系也可类似添辅助线
…………
(2)按基本图形添辅助线:
每个几何定理都有与它相对应的几何图形,我们 把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:
平行线是个基本图形:
当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线
等腰三角形是个简单的基本图形:
当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
等腰三角形中的重要线段是个重要的基本图形:
出现等腰三角形底边上的中点添底边上的中线;
出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
直角三角形斜边上中线基本图形
出现直角三角形斜边上的中点往往添斜边上的中线
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
三角形中位线基本图形
几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形
当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形。
当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
全等三角形:
全等三角形有轴对称形,中心对称形,旋转形与平移形等
如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。
当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线
…………
相似三角形:
相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型
当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。
…………
特殊角直角三角形
当出现30,45,60,135,150度特殊角时可添加特殊角直角三角形,利用45角直角三角形三边比为1:1:√2;30度角直角三角形三边比为1:2:√3进行证明
半圆上的圆周角
出现直径与半圆上的点,添90度的圆周角
出现90度的圆周角则添它所对弦---直径
4.数学几何辅助线怎么作
初中数学几何证明题辅助线一般画成虚线,画辅助线的原则(技巧)如下:
揭示图形中隐含的性质:当条件与结论间的逻辑关系不明朗时,通过添加适当的辅助线,将条件中隐含的有关图形的性质充分揭示出来。以便取得过渡性的推论,达到推导出结论的目的。
2.聚拢集中原则:通过添置适当的辅助线,将图形中分散,远离的元素,通过变换和转化,使他们相对集中,聚拢到有关图形上来,使题设条件与结论建立逻辑关系,从而推导出要求的结论。
3.构造图形的作用:对一类几何证明,常须用到某种图形,这种图形在题设条件所给的图形中却没有发现,必须添置这些图形,才能导出结论,常用方法有构造出线段和角的和差倍分,新的三角形,直角三角形,等腰三角形等。
5.数学怎样加辅助线
在几何学中用来帮助解答疑难几何图形问题在原图基础之上另外所作的具有极大价值的直线或者线段。
添辅助线的作用 1揭示图形中隐含的性质 当条件与结论间的逻辑关系不明朗时,通过添加适当的辅助线,将条件中隐含的有关图形的性质充分揭示出来,以便取得过渡性的推论,达到推导出结论的目的 2聚拢集中原则 通过添置适当的辅助线,将图形中分散,远离的元素,通过变换和转化,是他们相对集中,聚拢到有关图形上来,使题设条件与结论建立逻辑关系,从而推导出要求的结论 3化繁为简原则 对一类几何命题,其题设条件与结论之间在已知条件所给的图形中,其逻辑关系不明朗,通过添置适当辅助线,把复杂图形分解成简单图形,从而达到化繁为简,化难为易的目的 4发挥特殊点,线的作用 在题设条件所给的图形中,对尚未直接显现出来的各元素,通过添置适当辅助线,将那些特殊点,特殊线,特殊图形性质恰当揭示出来,并充分发挥这些特殊点,线的作用,达到化难为易,导出结论的目的 5构造图形的作用 对一类几何证明,常须用到某种图形,这种图形在题设条件所给的图形中却没有发现,必须添置这些图形,才能导出结论,常用方法有构造出线段和角的和差倍分,新的三角形,直角三角形,等腰三角形等添加辅助线是很考验数学功底 没什么诀窍 就是做题 题做得多了自然而然就知道怎么画了 数学只有大量的做题 多动脑才能学好 没什么捷径 通常构筑辅助线的情况:1.通过画辅助线构造特殊的三角形,如直角三角形、等边三角形2.过一点画一条直线的平行线,利用平行线的性质3.做垂线,最常用4.通过画辅助线,构造相似三角形,利用相似三角形的的比例关系5.在圆内,通常利用直径和弦来画辅助线,加上圆心角等来解题6.寻找重心、垂心、内心来构造适当的辅助线构造辅助线的目的就是在已知条件和所求命题之间假设一道桥梁,构造的方法非常多,需要经常做题,不断总结才能举一反三。 初中几何常见辅助线作法歌诀汇编初中几何辅助线的作法是学习中的难点。
许多同学常因辅助线的添加方法不当,造成解题困难。因此,在教学中,笔者编写了一些“顺口溜”歌诀,让同学们读诵;由于这些歌诀既上口好读,又通俗易懂,使同学们从枯燥无味的几何知识记忆中获得了一丝乐趣,同时也提高了学习成绩,因而受到了同学们的喜爱。
笔者又将这些歌诀重新进行了收集、整理、汇编;使之不但包括了整个初中平面几何常见辅助线的作法,而且更通俗易懂。现将该歌诀奉献给同学们,但愿能够给大家学习、复习带来一些帮助,便是我最大的心愿。
人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。
还要刻苦加钻研,找出规律凭经验。 图中有角平分线,可向两边作垂线。
也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。
角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。
要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。
三角形中有中线,延长中线等中线。平行四边形出现,对称中心等分点。
梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。
直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。
半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。
切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。
圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。
要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。
内外相切的两圆,经过切点公切线。若是添上连心线,切点肯定在上面。
要作等角添个圆,证明题目少困难。辅助线,是虚线,画图注意勿改变。
假如图形较分散,对称旋转去实验。基本作图很关键,平时掌握要熟练。
解题还要多心眼,经常总结方法显。切勿盲目乱添线,方法灵活应多变。
分析综合方法选,困难再多也会减。虚心勤学加苦练,成绩上升成直线.看懂了,理解一下就行了这样心中有底了,再考也不怕了正所谓;读书破万卷,下笔便成文。