1.对数log怎么计算
一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log aN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数.一般地,函数y=log(a)X,(其中a是常数,a>0且a不等于1)叫做对数函数 它实际上就是指数函数的反函数,可表示为x=a^y.因此指数函数里对于a的规定,同样适用于对数函数.
举个例子:
log函数就是次方函数的逆运算的。y=2^x,这就是一个次方函数。y=2^x的逆函数就是x=log2y。
拓展资料
对数的定义
如果
即a的x次方等于N(a>0,且a≠1),那么数x叫做以a为底N的对数(logarithm),记作
其中,a叫做对数的底数,N叫做真数,x叫做“以a为底N的对数”。
1.特别地,我们称以10为底的对数叫做常用对数(common logarithm),并记为lg。
2.称以无理数e(e=2.71828。)为底的对数称为自然对数(natural logarithm),并记为ln。
3.零没有对数。
4.在实数范围内,负数无对数。[3] 在复数范围内,负数是有对数的。
事实上,当
,
则有e(2k+1)πi+1=0,所以ln(-1)的具有周期性的多个值,ln(-1)=(2k+1)πi。这样,任意一个负数的自然对数都具有周期性的多个值。例如:ln(-5)=(2k+1)πi+ln 5。
2.对数表怎么用
对数表是指通过计算得出从1开始各个整数的对数(现在一般用常用对数),所编排成的表格。
根据对数运算的基本公式,可知当因数或除数≠0时,在知道两大数的对数情况下,可很快计算出两数的积和商。 对数表的使用方法 首先,假设我们要计算1055*8712。
查表得lg1055≈3.023,lg8712≈3.940。 将两数相加,得6.963。
计算1055*8712≈10^6.963 = 9183330。 验算:直接计算1055*8712=9191160,可见有一定误差。
在对数位数取值更多时,数值将更为精确。 英语名词:logarithms。
如果a^b=n,那么log(a)(n)=b。其中,a叫做“底数”,n叫做“真数”,b叫做“以a为底的n的对数”。
log(a)(n)函数叫做对数函数。对数函数中n的定义域是n>0,零和负数没有对数;a的定义域是a>0且a≠1。
3.对数的换底公式怎么用
log(a)(b)表示以a为底的b的对数。
所谓的换底公式就是log(a)(b)=log(n)(b)/log(n)(a). 推导: 有对数 log(a)(b) 设a=n^x,b=n^y 则 log(a)(b)=log(n^x)(n^y) 根据 对数的基本公式4:log(a)(M^n)=nlog(a)(M) 和 基本公式5:log(a^n)(M)=1/n*log(a)(M) 得 log(n^x)(n^y)=y/x 由 a=n^x,b=n^y 得 y=log(n)(b),x=log(n)(a) 则有:log(a)(b)=log(n^x)(n^y)=log(n)(b)/log(n)(a) 得证:log(a)(b)=log(n)(b)/log(n)(a).。
4.对数表怎么用
对数表上有说明
例:log 8.72 = .
解:利用对数表中, 从最左一行 ( 直行 ) N底下找出87 ( 代表8.7 ),
其次在最上面一列 ( 横列 ) N的右侧找到2, 然后在87之横列
与2的直行交会处找到一数9405 ( 代表0.9405 ), 则log 8.72 = 0.9405.
N
01234
56789
表尾差
123456789
55
87
|
|
|
–––––––9405––––––––
5.自然对数怎么用
螺线特别是对数螺线的美学意义可以用指数的形式来表达: φkρ=αe 其中,α和k为常数,φ是极角,ρ是极径,e是自然对数的底。
为了讨论方便,我们把e或由e经过一定变换和复合的形式定义为“自然律”。因此,“自然律”的核心是e,其值为2.71828……,是一个无限循环数。
数,美吗? 1、数之美 人们很早就对数的美有深刻的认识。其中,公元前六世纪盛行于古希腊的毕达哥斯学派见解较为深刻。
他们首先从数学和声学的观点去研究音乐节奏的和谐,发现声音的质的差别(如长短、高低、轻重等)都是由发音体数量方面的差别决定的。例如发音体(如琴弦)长,声音就长;振动速度快,声音就高;振动速度慢,声音就低。
因此,音乐的基本原则在于数量关系。 毕达哥斯学派把音乐中的和谐原理推广到建筑、雕刻等其它艺术,探求什么样的比例才会产生美的效果,得出了一些经验性的规范。
例如,在欧洲有长久影响的“黄金律”据说是他们发现的(有人说,是蔡泌于一八五四年提出了所谓的“黄金分割律”。所谓黄金分割律“就是取一根线分为两部分,使长的那部分的平方等于短的那部分乘全线段。”
“如果某物的长与宽是按照这个比例所组成的,那么它就比由其它比例所组成的长方形‘要美’。”)。
这派学者还把数学与和谐的原则应用于天文学的研究,因而形成所谓“诸天音乐”或“宇宙和谐”的概念,认为天上诸星体在遵照一定的轨道运动中,也产生一种和谐的音乐。他们还认为,人体的机能也是和谐的,就象一个“小宇宙”。
人体之所以美,是由于它各部分——头、手、脚、五官等比例适当,动作协调;宇宙之所以美,是由于各个物质单位以及各个星体之间运行的速度、距离、周转时间等等配合协调。这些都是数的和谐。
中国古代思想家们也有类似的观点。道家的老子和周易《系辞传》,都曾尝试以数学解释宇宙生成,后来又衍为周易象数派。
《周易》中贲卦的表示朴素之美,离卦的表示华丽之美,以及所谓“极其数,遂定天下之象”,都是类似数学推理的结论。儒家的荀卿也说过:“万物同宇宙而异体。
无宜而有用为人,数也。”庄子把“小我”与“大我”一视同仁,“小年”与“大年”等量齐观,也略同于毕达哥拉斯学派之把“小宇宙”和“大宇宙”互相印证。
所谓“得之于手而应用于心,口不能言,有数存在焉与其间”。这种从数的和谐看出美的思想,深深地影响了后世的中国美学。
2、黄金律之美 黄金律历来被染上瑰丽诡秘的色彩,被人们称为“天然合理”的最美妙的形式比例。我们知道,黄金律不仅是构图原则,也是自然事物的最佳状态。
中世纪意大利数学家费勃奈舍发现,许多植物叶片、花瓣以及松果壳瓣,从小到大的序列是以0.618:1的近似值排列的,这即是著名的“费勃奈舍数列”:1、2、3、5、8、13、21、34……动物身上的色彩图案也大体符合黄金比。舞蹈教练、体操专家选择人材制定的比列尺寸,例如肩宽和腰的比例、腰部以上与腰部以下的比列也都大体符合黄金比。
现代科学家还发现,当大脑呈现的“倍塔”脑电波的高频与低频之比是1:0.618的近似值(12.9赫兹与8赫兹之比)时,人的心身最具快感。甚至,当大自然的气温(23摄氏度)与人的体温37摄氏度之比为0.618:1时,最适宜于人的身心健康,最使人感到舒适。
另外,数学家们为工农业生产制度的优选法,所提出的配料最佳比例、组织结构的最佳比例等等,也都大体符合黄金律。 然而,这并不意味着黄金律比“自然律”更具有美学意义。
我们可以证明,当对数螺线: φkρ=αe 的等比取黄金律,即k=0.0765872,等比P1/P2=0.618时,则螺线中同一半径线上相邻极半径之比都有黄金分割关系。事实上,当函数f(X)等于e的X次方时,取X为0.4812,那么,f(X)=0.618…… 因此,黄金律被“自然律”逻辑所蕴含。
换言之,“自然律”囊括了黄金律。 黄金律表现了事物的相对静止状态,而“自然律”则表现了事物运动发展的普遍状态。
因此,从某种意义上说,黄金律是凝固的“自然律”,“自然律”是运动着的黄金律。 3、“自然律”之美 “自然律”是e及由e经过一定变换和复合的形式。
e是“自然律”的精髓,在数学上它是函数: 1(1+——) X的X次方,当X趋近无穷时的极限。 人们在研究一些实际问题,如物体的冷却、细胞的繁殖、放射性元素的衰变时,都要研究 1(1+——) X的X次方,当X趋近无穷时的极限。
正是这种从无限变化中获得的有限,从两个相反方向发展(当X趋向正无穷大的时,上式的极限等于e=2.71828……,当X趋向负无穷大时候,上式的结果也等于e=2.71828……)得来的共同形式,充分体现了宇宙的形成、发展及衰亡的最本质的东西。 现代宇宙学表明,宇宙起源于“大爆炸”,而且目前还在膨胀,这种描述与十九世纪后半叶的两个伟大发现之一的熵定律,即热力学第二定律相吻合。
熵定律指出,物质的演化总是朝着消灭信息、瓦解秩序的方向,逐渐由复杂到简单、由高级到低级不断退化的过程。退化的极限就是无序的平衡,即熵最大的状态,一种无为的死寂状态。
这过程看起来像什么?只要我们看看天体照相中的旋涡星系的照片即不难理解。如果。
6.2的常用对数是多少
2的常用对数是lg2。
如果a^x=N(a>0,且a≠1),则x叫做以a为底N的对数,记做x=log(a)(N),其中a要写于log右下。
其中a叫做对数的底,N叫做真数 [1] 。通常我们将以10为底的对数叫做常用对数,以e为底的对数称为自然对数。
近似值:
lg2≈0.3010
lg3≈0.4771
lg4=2lg2≈0.6020
lg5=1-lg2≈0.6990
扩展资料
log2、lg2、ln2的区别:
他们都是对数函数.区别是底不同,log2是以某个数为底2的对数,lg2是常用对数,是以10为底的对数 lg2=log10的2,ln2是以e为底的对数,ln2=loge的2 e=2.71828。
常用对数又称“十进对数”。以10为底的对数,用记号“lg”表示。如lgA表示以10为底A的对数,其中A为真数。
任一正数的常用对数都可表示成一个整数和一个正的纯小数(或零)的和;整数部分称为对数的“首数”,正的纯小数(或零)称为对数的“尾数”。常用对数有对数表可查。