1. 约等号有几种写法
约等号有2种写法。
1、一种常见的写法是“≈”;
2、还有一种写法是等号上面加一点,下面加一点≒,读作约等于或近似于。
如把398000写成用万作单位的数是 398000=39.8万,改换计数单位而不改变数值大小时用等号。如果39.8万需保留整数,则原数值的大小有了变化,所以要用约等号,可写成39.8万≈40万。
扩展资料:
需要注意:书写等号和约等号应规范化。表示等号的两条直线应平行且长度相当于一个相应的汉字宽度;约等号是两条不相交的曲线“≈”。
与约等号类似的等号:在15、16世纪的数学书中,还用单词代表两个量的相等关系。例如在当时一些公式里,常常写着aequaliter这个单词,其含义是“相等”的意思。
1557年,英国数学家列科尔德,在其论文《智慧的磨刀石》中说:“为了避免枯燥地重复aequalite (等于)这个单词,我认真地比较了许多的图形和记号,觉得世界上再也没有比两条平行而又等长的线段,意义更相同了。”
于是,列科尔德有创见性地用两条平行且相等的线段“=”表示“相等”,“=”叫做等号。用“=”替换了单词表示相等是数学上的一个进步。由于受当时历史条件的限制,列科尔德发明的等号,并没有马上为大家所采用。
历史上也有人用其它符号表示过相等。例如数学家笛卡儿在1637年出版的《几何学》一书中,曾用“∞”表示过“相等”。直到17世纪,德国的数学家莱布尼兹,在各种场合下大力倡导使用“=”,由于他在数学界颇负盛名,等号渐渐被世人所公认。
参考资料来源:搜狗百科-约等号
2. 等于的英文单词怎样写
等于
amount come up to equal to up to
例句
Equal to。
等于
Be equal to
等于
a wish that was equivalent to a command; his statement was tantamount to an admission of guilt.
与命令相等的请求;他的陈述等于承认了罪行。
Not equal to.
不等于
A unit for measuring the displacement of ships, equal to35 cubic feet, and supposed to equal the volume taken by a long ton of seawater.
排水吨测量船舶排水量的单位,等于三十五立方英尺,相当于一长吨海水的体积
3. 1+1等于几的作文怎样写
我想1+1=2不能证明,他只能说是一个定率。最原始的定律。 1+1=2 目前还没有人证明出来他为什么=2 老陈也只证明出1+2。就很了不得了。 假设有一天有人证明出来1+1不等于2 这个世界不知道会变成什么样。 当年歌德巴赫写信给欧拉,提出这么两条猜想: (1)任何大于2的偶数都能分成两个素数之和 (2)任何大于5的奇数都能分成三个素数之和 很明显,(2)是一的推论 (2)已经被证明,是前苏联著名数学家伊·维诺格拉多夫用“圆法”和他自己创造的“三角和法”证明了充分大的奇数都可表为三个奇素数之和,就是著名的三素数定理。这也是目前为止,歌德巴赫猜想最大的突破。 在歌德巴赫猜想的证明过程中,还提出过这么个命题:每一个充分大的偶数,都可以表为素因子不超过m个与素因子不超过n个的两个数之和。这个命题简记为“m+n” 显然“1+1”正是歌德巴赫猜想的基础命题,“三素数定理”只是一个很重要的推论。 1973年,陈景润改进了“筛法”,证明了“1+2”,就是充分大的偶数,都可表示成两个数之和,其中一个是素数,另一个或者是素数,或者是两个素数的乘积。陈景润的这个证明结果被称为“陈氏定理”是至今为止,歌德巴赫猜想的最高记录.最后要证明的是1+1 给你看一个假设: 用以下的方式界定0,1和2 (eg. qv. Quine, Mathematical Logic, Revised Ed., Ch. 6, §43-44): 0 := {x: x ={y: ~(y = y)}} 1 := {x: y(yεx.&.x\{y}ε0)} 2 := {x: y(yεx.&.x\{y}ε1)} 〔比如说,如果我们从某个属于1这个类的分子拿去一个元素的话,那麽该分子便会变成0的分子。换言之,1就是由所有只有一个元素的类组成的类。〕 现在我们一般采用主要由 von Neumann 引入的方法来界定自然数。例如: 0:= ∧, 1:= {∧} = {0} =0∪{0}, 2:= {∧,{∧}} = {0,1} = 1∪{1} [∧为空集] 一般来说,如果我们已经构作集n, 那麽它的后继元(successor) n* 就界定为n∪{n}。 在一般的集合论公理系统中(如ZFC)中有一条公理保证这个构作过程能不断地延续下去,并且所有由这构作方法得到的集合能构成一个集合,这条公理称为无穷公理(Axiom of Infinity)(当然我们假定了其他一些公理(如并集公理)已经建立。 〔注:无穷公理是一些所谓非逻辑的公理。正是这些公理使得以Russell 为代表的逻辑主义学派的某些主张在最严格的意义下不能实现。〕 跟我们便可应用以下的定理来定义关于自然数的加法。 定理:命"|N"表示由所有自然数构成的集合,那麽我们可以唯一地定义映射A:|Nx|N→|N,使得它满足以下的条件: (1)对于|N中任意的元素x,我们有A(x,0) = x ; (2)对于|N中任意的元素x和y,我们有A(x,y*) = A(x,y)*。 映射A就是我们用来定义加法的映射,我们可以把以上的条件重写如下: (1) x+0 = x ;(2) x+y* = (x+y)*。 现在,我们可以证明"1+1 = 2" 如下: 1+1 = 1+0* (因为 1:= 0*) = (1+0)* (根据条件(2)) = 1* (根据条件(1)) = 2 (因为 2:= 1*) 〔注:严格来说我们要援用递归定理(Recursion Theorem)来保证以上的构作方法是妥当的,在此不赘。] 1+ 1= 2"可以说是人类引入自然数及有关的运算后"自然"得到的结论。但从十九世纪起数学家开始为建基于实数系统的分析学建立严密的逻辑基础后,人们才真正审视关于自然数的基础问题。我相信这方面最"经典"的证明应要算是出现在由Russell和Whitehead合着的"Principia Mathematica"中的那个。 我们可以这样证明"1+1 = 2": 首先,可以推知: αε1 (∑x)(α={x}) βε2 (∑x)(∑y)(β={x,y}.&.~(x=y)) ξε1+1 (∑x)(∑y)(β={x}∪{y}.&.~(x=y)) 所以对于任意的集合γ,我们有 γε1+1 (∑x)(∑y)(γ={x}∪{y}.&.~(x=y)) (∑x)(∑y)(γ={x,y}.&.~ (x=y)) γε2 根据集合论的外延公理(Axiom of Extension),我们得到1+1 = 2
4. 大于号怎么写
大于号的写法:>。
“大于”可以用数学符号表示为 >;,当一个数值比另一个数值大时使用大于号(>;)来表示它们之间的关系。
其几何意义可以这样解释:对于任意两实数a,b,都可在同一数轴上找到其对应点A,B若点A在点B右侧,则a>b。
扩展资料:
小于号“<;”是数学中不等式运算符号的一种。是英国数学家哈利奥特在自己的《使用分析学》(Artis Analyticae Praxis)一书中首先使用了“<;”和“>;”符号,但是直到他去世十年之后1631年才发表。a<b,表示a的数值比b的数值小。
大于等于的数学符号为≥。当一个数值比另一个数值大或两数相等时使用大于等于号"≥",又被称为“不小于”。对于任意两实数a,b,都可在同一数轴上找到其对应点A,B。若点A在点B右侧或A与B重合,则a≥b。
小于等于是一种判断方式,用来表示不等式左侧的值小于等于不等式右侧的值,符号为“≤”。例如3≤5。在各种数学,或编程中会出现。命题中,小于等于是小于或者等于,只要满足一个条件即可成立。小于等于又称为不大于。
参考资料来源:搜狗百科-大于
5. 大于等于号的标准写法
大于等于号的标准写法是:“≥”。
大于等于号也称为“不小于”,包含了大于和等于两种可能,在当一个数值比另一个数值大或两数相等时使用。其标准的写法是在大于号(>)的基础上添加一笔,即:“≥”。
扩展资料:
大于等于号的历史:
英国人哈里奥特于1631年开始采用现今通用之“大于”号“>;”及“小于”号“<;”,但并未为当时数学界所接受。直至百多年后才渐成标准之应用符号。1655年沃利斯曾以表示“等于或大于” ,到了1670年,他以及分别表示“等于或大于”和“等于或小于”。
据哥德巴赫于1734 年1月写给欧拉的一封信所述,现今通用之≧ 和≦符号为一法国人P.布盖(1698-1758) 所首先采用,然后逐渐流行。庞加莱与波莱尔于1901年引入符号<<;(远小于)和>>;(远大于),很快为数学界所接受,沿用至今。
参考资料来源:搜狗百科-大于等于