1.数学建模论文摘要该怎么写
一、写好数模答卷的重要性1. 评定参赛队的成绩好坏、高低,获奖级别,数模答卷,是唯一依据。
2. 答卷是竞赛活动的成绩结晶的书面形式。3. 写好答卷的训练,是科技写作的一种基本训练。
二、答卷的基本内容,需要重视的问题1.评阅原则 假设的合理性,建模的创造性,结果的合理性,表述的清晰程度。 2.答卷的文章结构 题目(写出较确切的题目;同时要有新意、醒目) 摘要(200-300字,包括模型的主要特点、建模方法和主要结论) 关键词(求解问题、使用的方法中的重要术语)1)问题重述。
2)问题分析。3)模型假设。
4)符号说明。5)模型的建立(问题分析,公式推导,基本模型,最终或简化模型等)。
6)模型求解(计算方法设计或选择;算法设计或选择,算法思想依据,步骤及实现,计算框图;所采用的软件名称;引用或建立必要的数学命题和定理;求解方案及流程。)7)进一步讨论(结果表示、分析与检验,误差分析,模型检验)8)模型评价(特点,优缺点,改进方法,推广。)
9)参考文献。10)附录(计算程序,框图;各种求解演算过程,计算中间结果;各种图形,表格。)
3. 要重视的问题1)摘要。包括:a. 模型的数学归类(在数学上属于什么类型);b. 建模的思想(思路);c. 算法思想(求解思路);d. 建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验……);e. 主要结果(数值结果,结论;回答题目所问的全部“问题”)。
▲ 注意表述:准确、简明、条理清晰、合乎语法、要求符合文章格式。务必认真校对。
2)问题重述。3)问题分析。
因素之间的关系、因素与环境之间的关系、因素自身的变化规律、确定研究的方法或模型的类型。5)模型假设。
根据全国组委会确定的评阅原则,基本假设的合理性很重要。a. 根据题目中条件作出假设 b. 根据题目中要求作出假设 关键性假设不能缺;假设要切合题意。
6) 模型的建立。a. 基本模型:ⅰ)首先要有数学模型:数学公式、方案等;ⅱ)基本模型,要求完整,正确,简明;b. 简化模型:ⅰ)要明确说明简化思想,依据等;ⅱ)简化后模型,尽可能完整给出;c. 模型要实用,有效,以解决问题有效为原则。
数学建模面临的、要解决的是实际问题,不追求数学上的高(级)、深(刻)、难(度大)。ⅰ)能用初等方法解决的、就不用高级方法;ⅱ)能用简单方法解决的,就不用复杂方法;ⅲ)能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。
d.鼓励创新,但要切实,不要离题搞标新立异。数模创新可出现在:▲ 建模中,模型本身,简化的好方法、好策略等;▲ 模型求解中;▲ 结果表示、分析、检验,模型检验;▲ 推广部分。
e.在问题分析推导过程中,需要注意的问题:ⅰ)分析:中肯、确切;ⅱ)术语:专业、内行;ⅲ)原理、依据:正确、明确;ⅳ)表述:简明,关键步骤要列出;ⅴ)忌:外行话,专业术语不明确,表述混乱,冗长。7)模型求解。
a. 需要建立数学命题时:命题叙述要符合数学命题的表述规范,尽可能论证严密。b. 需要说明计算方法或算法的原理、思想、依据、步骤。
若采用现有软件,说明采用此软件的理由,软件名称。c. 计算过程,中间结果可要可不要的,不要列出。
d. 设法算出合理的数值结果。8) 结果分析、检验;模型检验及模型修正;结果表示。
a. 最终数值结果的正确性或合理性是第一位的;b. 对数值结果或模拟结果进行必要的检验;结果不正确、不合理、或误差大时,分析原因, 对算法、计算方法、或模型进行修正、改进。c. 题目中要求回答的问题,数值结果,结论,须一一列出;d. 列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据;e. 结果表示:要集中,一目了然,直观,便于比较分析。
▲ 数值结果表示:精心设计表格;可能的话,用图形图表形式。▲ 求解方案,用图示更好。
9)必要时对问题解答,作定性或规律性的讨论。最后结论要明确。
10)模型评价 优点突出,缺点不回避。改变原题要求,重新建模可在此做。
推广或改进方向时,不要玩弄新数学术语。11)参考文献12)附录 详细的结果,详细的数据表格,可在此列出,但不要错,错的宁可不列。
主要结果数据,应在正文中列出,不怕重复。检查答卷的主要三点,把三关:a. 模型的正确性、合理性、创新性 b. 结果的正确性、合理性 c. 文字表述清晰,分析精辟,摘要精彩 三、关于写答卷前的思考和工作规划 答卷需要回答哪几个问题――建模需要解决哪几个问题;问题以怎样的方式回答――结果以怎样的形式表示;每个问题要列出哪些关键数据――建模要计算哪些关键数据;每个量,列出一组还是多组数――要计算一组还是多组数。
四、答卷要求的原理 1. 准确――科学性;2. 条理――逻辑性;3. 简洁――数学美;4. 创新――研究、应用目标之一,人才培养需要;5. 实用――建模、实际问题要求。五、建模理念 1. 应用意识 要解决实际问题,结果、结论要符合实际;模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题。
2. 数学建模 用数学方法解决问题。
2.论文摘要怎么写
多用于综述. 通常 一,在首次出现时必须加以说明.
(3) 报道-指示性摘要、表,除非该文献证实或否定了他人已出版的著作;繁简失当。而毕业论文的摘要的写法多是采用指示性摘要的写法,作者首先应该对论文的写作背景做简单介绍、结果和结论。在指示性摘要的写作过程中、笼统。
(8))缩略语,简明。比如一篇文章的题名是《几种中国兰种子试管培养根状茎发生的研究》、描述性摘要或论点摘要,句型应力求简单,对几种中国兰种子试管培养根状茎的发生进行了研究”、论文摘要的分类
根据内容的不同、正确使用语言文字和标点符号等。
(3)结构严谨。
四,如采用法定计量单位,不出现插图、论文摘要写作的注意事项
(1)摘要中应排除本学科领域已成为常识的内容,故需逐字推敲。摘要可用另页置于题名页(页上无正文)之前、具体、实验方法,即概括文章的主题和主要内容,学术论文的摘要一般置于题名和作者之后,一般不用数学公式和化学结构式。其基本要素包括研究目的,采用的手段和方法,并且拥有与文献同等量的主要信息、方法, 一般只用二三句话概括论文的主题,得出的结果和重要的结论。摘要是以提供文献内容梗概为目的,摘要的开头就不要再写、略称: 也常称为说明性摘要,我国期刊上发表的论文,然后应该对文章的主要内容进行简单的介绍。科技论文写作时应注意的其他事项,论文正文之前。即包括论文的目的,表达简明。新术语或尚无合适汉文术语的。建议采用“对……进行了研究”、代号、“报告了……现状”、结果和最终结论等.而重点是结果和结论,就能获得必要的信息,无独立性与自明性,摘要中不用图,不加评论和补充解释。
(7)不用引文、使人一目了然、表格、“进行了……调查”等记述方法标明一次文献的性质和文献主题。
(6)除了实在无法变通以外、确切地记述文献重要内容的短文,多采用报道性摘要。摘要不容赘言、指示性摘要和报道-指示性摘要
(1) 报道性摘要、化学结构式。摘要不分段,不用非公知公用的符号和术语,无空泛。中文摘要一般不宜超过300字、简要地概括论文的目的: 以报道性摘要的形式表述一次文献中的信息价值较高的部分, 摘要可分为以下三大类,不必使用“本文”,实质性的内容不能遗漏,可用原文或译出后加括号注明原文,有时也包括具有情报价值的其它重要的信息。每句话要表意明白,主要是对文章的提纲做简要的介绍,最后要对文章的研究意义进行介绍。
论文摘要又称概要。摘要慎用长句、方法,外文摘要不宜超过250个实词, 这种摘要可以部分地取代阅读全文,即不阅读全文。
(4)用第三人称。除了实在迫不得已,但要考虑到不能阅读中文的读者的需求。英文摘要虽以中文摘要为基础。
(2)不得简单重复题名中已有的信息,语义确切, 以指示性摘要的形式表述其余部分。具体地讲就是研究工作的主要对象和范围。
(5)要使用规范化的名词术语、“作者”等作为主语,电报式的写法亦不足取、非公知公用的符号和术语。摘要先写什么:“为了……、结果和结论等四部分内容。句子之间要上下连贯;切忌把应在引言中出现的内容写入摘要.
三, 其特点是全面、内容提要。
二、含混之词,但摘要毕竟是一篇完整的短文,后写什么, 而不涉及论据和结论、方法:要素不全,要按逻辑顺序来安排;一般也不要对论文内容作诠释和评论(尤其是自我评价): 报道性摘要、论文摘要的定义
摘要一般应说明研究工作目的,或缺目的,或缺方法: 也常称作信息性摘要或资料性摘要。摘要应具有独立性和自明性。内容必须完整. 该类摘要可用于帮助潜在的读者来决定是否需要阅读全文,互相呼应,也同样适用于摘要的编写、论文摘要的写法
目前.
(2) 指示性摘要。目前摘要编写中的主要问题有、会议报告等,除了相邻专业的读者也能清楚理解的以外;出现引文、主要数据和结论
3.数学毕业论文怎么写
不识最大自然数等使课本有一系列重大根本错误
【论文关键词】标准及非标准无穷大数 假自然数集 推翻百年自然数公理和集论 极限论 级数论 变量的变域
【论文摘要】可数集的各元都必可有自然数“配偶”这一特点使自识正整数5千年来一直“深埋地下”的最大自然数及无穷多无穷大自然数一下子“破土而出”推翻百年“标准实数完备”论,显示已知实数全体仅为实数宇宙中的一颗星球!从而揭示中、小学课本有一系列重大错误:搞错变量的变域而将部分误为全部(继而推出病态的“部分可=全部”);误以为“有首项的无穷数列必无末项”使级数论有常识性与概念性错误而使小学课本违反起码数学常识地断定0.99。=1;。。
一、极限论极难学的真因:常人拒绝思想混乱的理论
“数学是研究无穷的学科。”标准分析之前2千多年的数学一直使用无穷数进行推理计算并取得了一系列伟大成就,只不过对这类举足轻重的“更无理”数一直无力实现由感性认识跃升到理性认识罢了;本文表明实现此飞跃破解由“错误的无穷数概念”竟能推出许多正确结果这一“神秘”之谜竟须历时2千多年!太伟大的实践往往远远超前理论2千多年。故“数学的前进主要是由那些具有超常直觉的人们推动的,而非由那些长于做出严格证明的人们[1]。”当理论无法解释伟大实践时恰恰表明理论有重大缺陷,不能反而由理论来否定无穷数和行之极有效的无穷小数分析法(以下简称w法)。若无穷数不存在,w法就不堪一击而绝不可2千多年不倒。“‘真人不露相’,数学大厦有‘不露相’的骨干数。没有包在墙内的钢筋铁骨的大厦,越建得高就越不堪一击[2]。”本文表明否定这类数是百年重大冤案。 本文来自第一论文网
有超常直觉的莱布尼茨运用<;任何有穷正数的无穷小正数,建立了微积分。但缺乏超常直觉的后来者错误地认为使用无穷数是非法的,须以极限法来取代w法。然而[2]指出极限论有百年糊涂话。最关键要弄清j式0j式表达ρ所取各正数ρ均<;ε,“可从某时刻起以后所取各正数ρ均<;ε的ρ>0称为正无穷小”点明没<;ε的正数就没正无穷小变量,然而极限论又说无正数[3]书在“序列极限的精确描述”中说j式表示ρ“可以变得比任何一个固定的正数小”(100页)。而正数集的元都是固定正数。刘玉琏等《数学分析讲义学习辅导书上册(二版)》(高教出版社,2003)33页:"ε∈(0,
1)=D——表示ε可是D的任何一个数。许品芳等《高等数学(上)》5页:“对于任何正数ε”“ε代表着任何一个正数”(兵器工业出版社,1992.7)。无正数来源于
毕业论文
望可以帮到您。
4.数学论文怎么写
对中学数学教学的几点思考 进入新世纪以后,我们面临的问题很多,其中最关键的就是怎样使产业升级,在这方面起重要作用是人才。
究竟需要什么样的人才呢,专家们指出需要以下四种素质的人才:第一,有新观念;第二,能够不断从事技术创新;第三,善于经营和开拓市场;第四、有团队精神。为此数学教学中应加强学生这四个方面能力的培养。
一、在数学教学中培养学生的新观念、新思想 新观念中不仅包含对事物的新认识、新思想,而且包含一个不断学习的过程。为此作为新人才就必须学会学习,只有不断地学习,获取新知识更新观念,形成新认识。
在数学史上,法国大数学家笛卡尔在学生时代喜欢博览群书,认识到代数与几何割裂的弊病,他用代数方法研究几何的作图问题,指出了作图问题与求方程组的解之间的关系,通过具体问题,提出了坐标法,把几何曲线表示成代数方程,断言曲线方程的次数与坐标轴的选择无关,用方程的次数对曲线加以分类,认识到了曲线的交点与方程组的解之间的关系。主张把代数与几何相结合,把量化方法用于几何研究的新观点,从而创立解析几何学。
作为数学教师在教学中不仅要教学生学会,更应教学生会学。在不等式证明的教学中,我重点教学生遇到问题怎么分析,灵活运用比较、分析、综合三种基本证法,同时引导学生用三角、复数、几何等新方法研究证明不等式。
例 已知 a>=0,b>=0, 且 a+b=1, 求证 (a+2) (a+2) +(b+2) (b+2)>=25/2 证明这个不等式方法较多,除基本证法外,可利用二次函数的求最值、三角代换、构造直角三角形等途径证明。若将 a+b=1(a>=0,b>=0) 作为平面直角坐标系内的线段,也能用解析几何知识求证。
证法如下:在平面直角坐标系内取直线段 x+y=1,(0==1), (a+2) (a+2) +(b+2) (b+2)看作点(-2,-2)与线段x+y=1上的点(a,b)之间的距离的平方。由于点到一直线的距离是这点与该直线上任意一点之间的距离的最小值。
而 d*d=( -2-2-1|)/2=25/2, 所以(a+2) (a+2) +(b+2) (b+2)>=25/2。“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终生。
二、在数学教学中培养学生的创新能力 创新能力在数学教学中主要表现对已解决问题寻求新的解法。“学起于思,思源于疑”,学生探索知识的思维过程总是从问题开始,又在解决问题中得到发展和创新。
教学过程中学生在教师创设的情境下,自己动手操作、动脑思考、动口表达,探索未知领域,寻找客观真理,成为发现者,要让学生自始至终地参与这一探索过程,发展学生创新能力。如在球的体积教学中,我利用课余时间将学生分为三组,要求第一组每人做半径为10厘米的半球;第二组每人做半径为10厘米高10厘米圆锥;第三组每人做半径为10厘米高10厘米圆柱。
每组出一人又组成许多小组,各小组分别将圆锥放入圆柱中,然后用半球装满土倒入圆柱中,学生们发现它们之间的关系,半球的体积等于圆柱与圆锥体积之差。球的体积公式的推导过程,集公理化思想、转化思想、等积类比思想及割补转换方法之大成,就是这些思想方法灵活运用的完美范例。
教学中再次通过展现体积问题解决的思路分析,形成系统的条理的体积公式的推导线索,把这些思想方法明确地呈现在学生的眼前。学生才能从中领悟到当初数学家的创造思维进程,激发学生的创造思维和创新能力。
三、在数学教学中培养学生经营和开拓市场的能力 一切数学知识都来源于现实生活中,同时,现实生活中许多问题都需要用数学知识、数学思想方法去思考解决。比如,洗衣机按什么程序运行有利节约用水;渔场主怎样经营既能获得最高产量,又能实现可持续发展;一件好的产品设计怎样营销方案才能快速得到市场认可,产生良好的经济效益。
为此数学教学中应有意识地培养学生经营和开拓市场的能力。善于经营和开拓市场的能力在数学教学中主要体现为对一个数学问题或实际问题如何设计出最佳的解决方案或模型。
如证明组合恒等式Cnm=Cnm-1+Cn-1m-1,一般分析是利用组合数的性质,通过一些适当的计算或化简来完成。但是可以让学生思考能否利用组合数的意义来证明。
即构造一个组合模型,原式左端为m个元素中取n个的组合数。原式右端可看成是同一问题的另一种算法:把满足条件的组合分为两类,一类为不取某个元素a1,有Cnm-1种取法;一类为必取a1有Cn-1m-1种取法。
由加法原理及解的唯一性,可知原式成立。又如,经营和开拓市场时,我们常常需要对市场进行一些基本的数字统计,通过建立数学模型进行分析研究来驾驭和把握市场的实例也不少。
这类问题的讲解不仅能提高学生的智力和应用数学知识解决实际问题的能力,而且对提高学生的善于经营和开拓市场的能力大有益处。 四、在数学教学中培养学生团队精神 团队精神就是一种相互协作、相互配合的工作精神。
数学教师在教学中多设计一些学生互相配合能解决的问题,增进学生协作意识,培养他们的团队精神。如我又在讲授球的体积公式时,课前我让20名学生用厚0.5厘米的纸板依次做半径为10、9.5、9 …… 0.5厘米圆柱,列出各圆柱的体积计算公式并算出结果。
又让40名学生用厚0.25。
5.数学论文怎么写
数学小论文通过学生对生活中数学问题的观察和发现,引起学生的好奇心和求知欲,使学生体会到数学贴近他们的生活,从而对数学产生亲切感,激发起他们学习数学的热情和兴趣;通过引导学生对课堂中学习的数学知识进行实践运用,让学生感受到数学的实用性,提高数学学习的实效;通过探究趣味题和智慧题,开拓学生的视野,培养学生思维的灵活性和深刻性。
现结合笔者的教学实际谈谈数学小论文的几种具体写法。 1. 一道数学题的解答。
主要是学生对某一道有挑战性的题目简便的或与众不同的解法(包括一题多解)。例如,书后的思考题,奥数题,教师或家长布置的智慧题,数学刊物上的挑战题,平时自己在做题时遇到的有一定难度的题目等。
学生通过对这些问题的解决,不但发展了思维,而且体验到一种强烈的成就感,这对他以后数学的学习将是一个巨大的动力。 2. 用数学的眼光去分析现实问题。
主要指学生用数学的眼光去观察、计算、分析现实问题,获得一种理性的思考。比如,有学生写道:如果每人每天节约1克水,那全国13亿人口每天可以节约1 300吨水,发出了“人人节约一滴水,沙漠也能变绿洲”的感慨!还有学生写道:如果每个去银行储蓄的人每次都能为“希望工程”捐1角钱的话,全国那么多储蓄点捐到的钱可以资助多少贫困学生实现上学的梦想呀!学生能从这些角度通过数学的计算去思考社会意义,它的价值就能远远超过数学研究本身。
3. 生活中的数学问题。主要用来记录学生在生活中遇到的感兴趣并有亲身体验的有关数学的情境记录。
写这种数学小论文的题材特别多,比如,有学生写到了人民币为什么只有1元、2元、5元而没有3元、4元、6元、7元、8元、9元的;再如,有学生写到了他家住的楼房每层有24级楼梯,那么他从1楼到5楼要爬多少级楼梯。这些都是生活中每天要经历的很平常的事,但学生一旦用数学的眼光来观察和思考这些看似平常的生活问题,就在数学和生活之间架起了一座桥梁,能够感受到生活中处处有数学。
4. 课堂上的数学问题。主要指学生在课堂数学学习过程中自己的一些思考和发现。
这对学生数学学习非常有帮助,比如,有个学生在学习画三角形的高时,发现书上介绍了锐角三角形和直角三角形的三条高,而钝角三角形只介绍了一条高。她在课后通过自己的思考和尝试,画出了钝角三角形的另外两条高,在得到老师的肯定后,欣喜万分,连忙写下了《我发现了钝角三角形的另外两条高》这篇数学小论文。
5. 数学实践活动中遇到的问题。主要指学生通过自己亲自动手实践,在实践活动的过程中产生的疑惑、获得的启示和得到的结论等。
比如,有个学生在教师还没有上实践活动课“可能性”之前,自己看书并根据书上的内容用红、蓝铅笔去摸,自己动手去探索并验证规律,事后写了一篇心得体会,写出了她在动手实践过程中的想法和体会,让她觉得其乐无穷。 6. 数学童话。
主要指学生发挥丰富的想象力,用童话的形式(其中包含着数学论述)来记录看到的数学世界。这是语文学科和数学学科一种很好的整合,那种独特的视角,生动的语言描述,让教师耳目一新。
三、指导学生写数学小论文应注意的几个问题 1. 注意结合学生的实际水平,做到循序渐进。刚开始写作,起点不要过高,写作内容、形式的选择要考虑学生的实际能力和水平,还要考虑学生是否具备观察、测试、实验的能力和条件。
没有经过实践,没有可靠的材料和数据,是不可能写出有科学价值的文章的。数学小论文的价值与题目的大小没有多大关系,小题目照样可写出大文章来。
初学者最好是一题一议。题目大了费时费力,不容易说清楚,往往写不下去。
题目缩小,论据材料容易收集,也降低了文章的写作难度,有利于学生的参与。 2. 注意结合学生身边的数学实际,做到切实可行。
小学生所学数学知识有限,精力和时间也有限,教师指导学生写数学小论文应注意紧密结合学生的学习和生活实际。教师可以有指导性地帮学生选一些题材,让学生根据自己的亲身体验去写,这样学生易于接受,容易理解,有利于写作。
比如,在学完面积单位和长方形、正方形的面积后,让学生通过亲自动手测量并估算出课桌、教室地面面积大约有多少平方米,并把实践活动的过程写成数学小论文。又如为了教育学生节约粮食,可以让学生调查统计学校食堂每天浪费多少千克粮食,一年下来学校节约的粮食可以派什么用场。
这样学生就会有活动,有思考,有内容可写。 3. 注意培养学生的参与意识,让学生积极主动撰写数学小论文。
教学的主体是学生,只有学生积极参与,将数学小论文变成自觉的行动,这个活动才可能取得预期的效果。开展写作的目的也在于提高学生学习的积极性,变被动学习为主动学习,培养学生的自学能力和创新意识。
由于小学生知识和能力的限制,大多数学生不大可能写出水平很高的小论文。写数学小论文的活动,对学生来说,最大的意义就是参与。
在参与写作活动过程中,学生的能力会得到提高,才能会得到展现。