1.最小二乘法怎么用
LINEST 函数可通过使用最小二乘法计算与现有数据最佳拟合的直线,来计算某直线的统计值,然后返回描述此直线的数组。也可以将 LINEST 与其他函数结合使用来计算未知参数中其他类型的线性模型的统计值,包括多项式、对数、指数和幂级数。因为此函数返回数值数组,所以必须以数组公式的形式输入。请按照本文中的示例使用此函数。
直线的公式为:
y = mx + b
- 或 -
y = m1x1 + m2x2 + 。 + b(如果有多个区域的 x 值)
其中,因变量 y 是自变量 x 的函数值。m 值是与每个 x 值相对应的系数,b 为常量。注意,y、x 和 m 可以是向量。LINEST 函数返回的数组为 {mn,mn-1,。,m1,b}。LINEST 函数还可返回附加回归统计值。
语法
LINEST(known_y's, [known_x's], [const], [stats])LINEST 函数语法具有以下参数 (参数:为操作、事件、方法、属性、函数或过程提供信息的值。):
Known_y's 必需。关系表达式 y = mx + b 中已知的 y 值集合。
如果 known_y's 对应的单元格区域在单独一列中,则 known_x's 的每一列被视为一个独立的变量。
如果 known_y's 对应的单元格区域在单独一行中,则 known_x's 的每一行被视为一个独立的变量。
Known_x's 可选。关系表达式 y = mx + b 中已知的 x 值集合。
known_x's 对应的单元格区域可以包含一组或多组变量。如果仅使用一个变量,那么只要 known_y's 和 known_x's 具有相同的维数,则它们可以是任何形状的区域。如果使用多个变量,则 known_y's 必须为向量(即必须为一行或一列)。
如果省略 known_x's,则假设该数组为 {1,2,3,。},其大小与 known_y's 相同。
const 可选。一个逻辑值,用于指定是否将常量 b 强制设为 0。
如果 const 为 TRUE 或被省略,b 将按通常方式计算。
如果 const 为 FALSE,b 将被设为 0,并同时调整 m 值使 y = mx。
stats 可选。一个逻辑值,用于指定是否返回附加回归统计值。
如果 stats 为 TRUE,则 LINEST 函数返回附加回归统计值,这时返回的数组为 {mn,mn-1,。,m1,b;sen,sen-1,。,se1,seb;r2,sey;F,df;ssreg,ssresid}。
如果 stats 为 FALSE 或被省略,LINEST 函数只返回系数 m 和常量 b。
2.最小2乘法怎么用,举例具体说明
最小二乘法原理
在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1、x2, y2。 xm , ym);
将这些数据描绘在x -y直角坐标系中(如图1), 若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。
Y计= a0 + a1 X (式1-1) 其中:a0、a1 是任意实数
为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和〔∑(Yi - Y计)2〕最小为“优化判据”。 令: φ = ∑(Yi - Y计)2 (式1-2) 把(式1-1)代入(式1-2)中得: φ = ∑(Yi - a0 - a1 Xi)2 (式1-3) 当∑(Yi-Y计)平方最小时,可用函数 φ 对a0、a1求偏导数,令这两个偏导数等于零。 (式1-4) (式1-5) 亦即: m a0 + (∑Xi ) a1 = ∑Yi (式1-6) (∑Xi ) a0 + (∑Xi2 ) a1 = ∑(Xi, Yi) (式1-7) 得到的两个关于a0、a1为未知数的两个方程组,解这两个方程组得出: a0 = (∑Yi) / m - a1(∑Xi) / m (式1-8) a1 = [∑Xi Yi - (∑Xi ∑Yi)/ m] / [∑Xi2 - (∑Xi)2 / m)] (式1-9)
这时把a0、a1代入(式1-1)中, 此时的(式1-1)就是我们回归的元线性方程即:数学模型。
在回归过程中,回归的关联式是不可能全部通过每个回归数据点(x1, y1、x2, y2。xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于 1 越好;“F”的绝对值越大越好;“S”越趋近于 0 越好。 R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ SQR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]} (式1-10) * 在(式1-1)中,m为样本容量,即实验次数;Xi、Yi分别任意一组实验X、Y的数值。
我们知道最小二乘法可以用来处理一组数据, 可以从一组测定的数据中寻求变量之间的依赖关系, 这种函数关系称为经验公式. 本课题将介绍最小二乘法的精确定义及如何寻求 与 之间近似成线性关系时的经验公式. 假定实验测得变量之间的 个数据 , , …, , 则在 平面上, 可以得到 个点 , 这种图形称为“散点图”, 从图中可以粗略看出这些点大致散落在某直线近旁, 我们认为 与 之间近似为一线性函数, 下面介绍求解步骤. 考虑函数 , 其中 和 是待定常数. 如果 在一直线上, 可以认为变量之间的关系为 . 但一般说来, 这些点不可能在同一直线上. 记 , 它反映了用直线 来描述 , 时, 计算值 与实际值 产生的偏差. 当然要求偏差越小越好, 但由于 可正可负, 因此不能认为总偏差 时, 函数 就很好地反映了变量之间的关系, 因为此时每个偏差的绝对值可能很大. 为了改进这一缺陷, 就考虑用 来代替 . 但是由于绝对值不易作解析运算, 因此, 进一步用 来度量总偏差. 因偏差的平方和最小可以保证每个偏差都不会很大. 于是问题归结为确定 中的常数 和 , 使 为最小. 用这种方法确定系数 , 的方法称为最小二乘法. 由极值原理得 , 即 解此联立方程得 (*) 问题 I 为研究某一化学反应过程中, 温度 ℃)对产品得率 (%)的影响,
测得数据如下:
温度 ℃) 100 110 120 130 140 150 160 170 180 190
得率 (%) 45 51 54 61 66 70 74 78 85 89
3.最小二乘法的公式是什么意思,怎么带值啊
在我们研究两个变量(x, y)之间的相互关系时,通常可以得到一系列成对的数据(x1, y1),(x2, y2).. (xm , ym);将这些数据描绘在x -y直角坐标系中(如图1), 若发现这些点在一条直线附近,可以令这条直线方程如(式1-1)。
Y计= a0 + a1 X (式1-1)
其中:a0、a1 是任意实数
为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和〔∑(Yi - Y计)²〕最小为“优化判据”。
令: φ = ∑(Yi - Y计)² (式1-2)
把(式1-1)代入(式1-2)中得:
φ = ∑(Yi - a0 - a1 Xi)2 (式1-3)
当∑(Yi-Y计)²最小时,可用函数 φ 对a0、a1求偏导数,令这两个偏导数等于零。
4.最小二乘法计算公式是
最小二乘法公式是一个2113数学的5261公式,在数学上称为曲线拟合,此处所4102讲最小二乘法,专指线1653性回归方程!最小二乘法公式为b=y(平均)-a*x(平均)。
拓展资料:
曲线拟合俗称拉曲线,是一种把现有数据透过数学方法来代入一条数式的表示方式。科学和工程问题可以通过诸如采样、实验等方法获得若干离散的数据,根据这些数据,我们往往希望得到一个连续的函数(也就是曲线)或者更加密集的离散方程与已知数据相吻合,这过程就叫做拟合。
5.怎样使用excel计算最小二乘法
LINEST 函数可通过使用最小二乘法计算与现有数据最佳拟合的直线,来计算某直线的统计值,然后返回描述此直线的数组。也可以将 LINEST 与其他函数结合使用来计算未知参数中其他类型的线性模型的统计值,包括多项式、对数、指数和幂级数。因为此函数返回数值数组,所以必须以数组公式的形式输入。请按照本文中的示例使用此函数。
直线的公式为:
y = mx + b
- 或 -
y = m1x1 + m2x2 + 。 + b(如果有多个区域的 x 值)
其中,因变量 y 是自变量 x 的函数值。m 值是与每个 x 值相对应的系数,b 为常量。注意,y、x 和 m 可以是向量。LINEST 函数返回的数组为 {mn,mn-1,。,m1,b}。LINEST 函数还可返回附加回归统计值。
语法
LINEST(known_y's, [known_x's], [const], [stats])LINEST 函数语法具有以下参数 (参数:为操作、事件、方法、属性、函数或过程提供信息的值。):
Known_y's 必需。关系表达式 y = mx + b 中已知的 y 值集合。
如果 known_y's 对应的单元格区域在单独一列中,则 known_x's 的每一列被视为一个独立的变量。
如果 known_y's 对应的单元格区域在单独一行中,则 known_x's 的每一行被视为一个独立的变量。
Known_x's 可选。关系表达式 y = mx + b 中已知的 x 值集合。
known_x's 对应的单元格区域可以包含一组或多组变量。如果仅使用一个变量,那么只要 known_y's 和 known_x's 具有相同的维数,则它们可以是任何形状的区域。如果使用多个变量,则 known_y's 必须为向量(即必须为一行或一列)。
如果省略 known_x's,则假设该数组为 {1,2,3,。},其大小与 known_y's 相同。
const 可选。一个逻辑值,用于指定是否将常量 b 强制设为 0。
如果 const 为 TRUE 或被省略,b 将按通常方式计算。
如果 const 为 FALSE,b 将被设为 0,并同时调整 m 值使 y = mx。
stats 可选。一个逻辑值,用于指定是否返回附加回归统计值。
如果 stats 为 TRUE,则 LINEST 函数返回附加回归统计值,这时返回的数组为 {mn,mn-1,。,m1,b;sen,sen-1,。,se1,seb;r2,sey;F,df;ssreg,ssresid}。
如果 stats 为 FALSE 或被省略,LINEST 函数只返回系数 m 和常量 b。
转载请注明出处育才学习网 » 最小二乘法公式怎么用(最小二乘法怎么用)