1. 零矩阵怎么表示
零矩阵的手写把零写大些就可以。
矩阵大写,变量一般都是小写字母,线性代数里的矩阵不需要加箭头,并没有特别的符号,被声明用于约定手写规范。至于手写的向量,如果用英文字母表示其实应该加箭头,所以考研书里都用希腊字母表示,如ξ、η、γ等,这些不必加箭头。
扩展资料:
零矩阵的性质
m*n 的零矩阵 O 和 m*n 的任意矩阵 A 的和为 A + O = O + A = A ,差为 A - O = A,O - A = -A。
l*m 的零矩阵 O 和 m*n 的任意矩阵 A 的积 OA 为 l*n 的零矩阵。
l*m 的任意矩阵 B 和 m*n 的零矩阵 O 的积 BO 为 l*n 的零矩阵。
在线性代数中,对于n阶方阵N,存在正整数k,使得N^k=0,这样的方阵N就叫做幂零矩阵。满足条件的最小的正整数k被称为N的度数或指数。更一般来说,零权变换是向量空间的线性变换L,使得对于一些正整数k(并且因此,对于所有j≥k,Lj = 0),L^k= 0。
2. 矩阵的一个小问题什么叫对角矩阵
对角矩阵就是除主对角线外,其它位置都为零的矩阵.或者等价的定义为满足A'=A的矩阵 对角矩阵只要求对角线以外的位置都为零,对角线上是否出现零没有关系,全零矩阵也是对角矩阵.一个n阶矩阵a11=1 其余位置都为0的矩阵也是对角矩阵. 矩阵可对角化分为两种,一种是相似对角化,也就是存在可逆矩阵X,使得X^(-1)AX为对角矩阵.另一种是合同对角化.也就是存在可逆矩阵C,使得C'AC为对角矩阵. 我们一般所说的对角化指相似对角化 不是所有的矩阵都可以相似对角化,但任何矩阵都可以相似化为若尔当标准型.所有的矩阵都可以合同对角化. 在刚学习哈密顿-凯莱定理时,很多学生认为是想当然成立的,其实不然,这里关键的原因在于A是一个矩阵,不是一个数,所以是不能直接代入的,矩阵和数有很多不同,运算和性质都不同.不能想当然的认为对数成立的式子对矩阵也成立.要另行对矩阵的情况重新进行严格的证明.。