1.误差修正模型该怎么解释
建立误差修正模型,首先对变量进行协整分析,以发现变量之间的协整关系,即长期均衡关系,并以这种关系构成误差修正项。 然后建立短期模型,将误差修正项看作一个解释变量,连同其它反映短期波动的解释变量一起,建立短期模型,即误差修正模型。
对于非稳定时间序列,可通过差分的方法将其化为稳定序列,然后才可建立经典的回归分析模型。如:建立人均消费水平(Y)与人均可支配收入(X)之间的回归模型:
Yt = α0 + α1Xt + μt
如果Y与X具有共同的向上或向下的变化趋势,进行差分,X,Y成为平稳序列,建立差分回归模型得:
ΔYt = α1ΔXt + vt
式中,vt = μt − μt − 1
然而,这种做法会引起两个问题: (1)如果X与Y间存在着长期稳定的均衡关系 Yt = α0 + α1Xt + μt 且误差项μt不存在序列相关,则差分式 ΔYt = α1ΔXt + vt 中的vt是一个一阶移动平均时间序列,因而是序列相关的。
扩展资料:
误差修正模型创建模型方法
(1)Engle-Granger两步法
由协整与误差修正模型的的关系,可以得到误差修正模型建立的E-G两步法:
第一步,进行协整回归(OLS法),检验变量间的协整关系,估计协整向量(长期均衡关系参数);
第二步,若协整性存在,则以第一步求到的残差作为非均衡误差项加入到误差修正模型中,并用OLS法估计相应参数。
需要注意的是:在进行变量间的协整检验时,如有必要可在协整回归式中加入趋势项,这时,对残差项的稳定性检验就无须再设趋势项。 另外,第二步中变量差分滞后项的多少,可以残差项序列是否存在自相关性来判断,如果存在自相关,则应加入变量差分的滞后项。
(2)直接估计法
也可以采用打开误差修整模型中非均衡误差项括号的方法直接用OLS法估计模型。 但仍需事先对变量间的协整关系进行检验。如对双变量误差修正模型可打开非均衡误差项的括号直接估计下式:
这时短期弹性与长期弹性可一并获得。 需注意的是,用不同方法建立的误差修正模型结果也往往不一样。
2.误差修正模型的结构
为了便于理解,我们通过一个具体的模型来介绍它的结构。
假设两变量X与Y的长期均衡关系为:
Yt = α0 + α1Xt + μt
由于现实经济中X与Y很少处在均衡点上,因此实际观测到的只是X与Y间的短期的或非均衡的关系,假设具有如下(1,1)阶分布滞后形式
该模型显示出第t期的Y值,不仅与X的变化有关,而且与t-1期X与Y的状态值有关。
由于变量可能是非平稳的,因此不能直接运用OLS法。
对上述分布滞后模型适当变形得: (**) , 式中,λ = 1 − μ,, 如果将(**)中的参数,与Yt = α0 + α1Xt + μt中的相应参数视为相等,则(**)式中括号内的项就是t-1期的非均衡误差项。
(**)式表明:Y的变化决定于X的变化以及前一时期的非均衡程度。同时,(**)式也弥补了简单差分模型ΔY1 = ΔXt + vt的不足,因为该式含有用X、Y水平值表示的前期非均衡程度。因此,Y的值已对前期的非均衡程度作出了修正。
(**) 称为一阶误差修正模型(first-order error correction model)。
(**)式可以写成: 其中:ecm表示误差修正项。由分布滞后模型知:一般情况下|μ|<1 ,由关系式μ得0<;λ<1。可以据此分析ecm的修正作用:
(1)若(t-1)时刻Y大于其长期均衡解α0 + α1X,ecm为正,则(-λecm)为负,使得ΔYt减少;
(2)若(t-1)时刻Y小于其长期均衡解α0 + α1X,ecm为负,则(-λecm)为正,使得ΔYt增大。
(***)体现了长期非均衡误差对的控制。 需要注意的是:在实际分析中,变量常以对数的形式出现。
其主要原因在于变量对数的差分近似地等于该变量的变化率,而经济变量的变化率常常是稳定序列,因此适合于包含在经典回归方程中。
于是:
(1)长期均衡模型
Yt = α0 + α1Xt + μt
中的α1可视为Y关于X的长期弹性(long-run elasticity)
(2)短期非均衡模型 中的β1可视为Y关于X的短期弹性(short-run elasticity)。
更复杂的误差修正模型可依照一阶误差修正模型类似地建立。
3.误差修正模型的模型建立
(1)Granger 表述定理
误差修正模型有许多明显的优点:如 a)一阶差分项的使用消除了变量可能存在的趋势因素,从而避免了虚假回归问题; b)一阶差分项的使用也消除模型可能存在的多重共线性问题; c)误差修正项的引入保证了变量水平值的信息没有被忽视; d)由于误差修正项本身的平稳性,使得该模型可以用经典的回归方法进行估计,尤其是模型中差分项可以使用通常的t检验与F检验来进行选取。
因此,一个重要的问题就是:是否变量间的关系都可以通过误差修正模型来表述?
就此问题,Engle 与 Granger 1987年提出了著名的Grange表述定理(Granger representaion theorem):
如果变量X与Y是协整的,则它们间的短期非均衡关系总能由一个误差修正模型表述:
ΔYt = lagged(ΔY,ΔX) − λμt − 1 + εt
式中,μt − 1是非均衡误差项或者说成是长期均衡偏差项, λ是短期调整参数。
对于(1,1)阶自回归分布滞后模型如果 Yt~I(1), Xt~I(1) ; 那么的左边ΔYt~I(0) ,右边的ΔXt ~I(0) ,因此,只有Y与X协整,才能保证右边也是I(0)。
因此,建立误差修正模型,需要
首先对变量进行协整分析,以发现变量之间的协整关系,即长期均衡关系,并以这种关系构成误差修正项。然后建立短期模型,将误差修正项看作一个解释变量,连同其它反映短期波动的解释变量一起,建立短期模型,即误差修正模型。
(2)Engle-Granger两步法
由协整与误差修正模型的的关系,可以得到误差修正模型建立的E-G两步法: 第一步,进行协整回归(OLS法),检验变量间的协整关系,估计协整向量(长期均衡关系参数); 第二步,若协整性存在,则以第一步求到的残差作为非均衡误差项加入到误差修正模型中,并用OLS法估计相应参数。 需要注意的是:在进行变量间的协整检验时,如有必要可在协整回归式中加入趋势项,这时,对残差项的稳定性检验就无须再设趋势项。 另外,第二步中变量差分滞后项的多少,可以残差项序列是否存在自相关性来判断,如果存在自相关,则应加入变量差分的滞后项。
(3)直接估计法
也可以采用打开误差修整模型中非均衡误差项括号的方法直接用OLS法估计模型。 但仍需事先对变量间的协整关系进行检验。
如对双变量误差修正模型可打开非均衡误差项的括号直接估计下式:
这时短期弹性与长期弹性可一并获得。 需注意的是,用不同方法建立的误差修正模型结果也往往不一样。
4.请问如何用EVIEWS做误差修正模型
误差修正一般是两个变量才能做的,你变量多就会出现问题。
如果你不介意的话也是可以做的,首先需要对你所有的变量cpi、loap、rpi做单位根检验,看这个三个变量是否是单位根过程,如果是的话就检验一阶差分的平稳性。如果三个变量的单整阶数相同就能做一下协整,然后利用协整模型做误差修正模型了。
如果你不太清楚怎么做,可以参考高铁梅的那本计量的书,有比较详细的Eviews软件的使用方法和建模步骤。
希望可以帮到你~~~~~~~~~~
5.误差修正模型的介绍
最低0.27元开通文库会员,查看完整内容> 原发布者:人生_浮萍_ 10.4向量误差修正模型(VECM)10.4.1VECM的表达形式对于含有n个变量的VAR模型,当对应的矩阵的秩介于0和n之间的时候,即0rn,这n个变量之间存在r个协整关系。
让我们定义一个r维的矩阵B,其中B的列含有(nr)个不同的线性独立协整向量,所以rank(B)r。从长期来看,即所谓的均衡状态或者静止状态,这样的关系精确地存在,所以在长期,我们有:ZtBYt0然而,从短期来看,例如对于每个确定的时刻t,都存在偏离协整关系BYt的成分。
这种偏离代表了这些长期关系在短期内的一定程度的非均衡状态,所以偏离成分一般被称为误差。AZt1ABYt1促使Yt增加或者因此,减少,从而使得BYt朝着它的长期均值移动(长期均值为0,为什么?)。
这种增加或者减小的变化,实际上是一种调整,所以称为误差修正。因为这里我们研究的对象是VAR模型,所以VECM的名字由此而来。
根据定义,矩阵A衡量了Yt中每个变量是如何调整,从而回复到长期的均衡关系的水平上。所以,矩阵A经常被称为调整系数。
另外,在实践中,经常对协整向量B进行标准化。10.4.2VECM模型的演示1)两个变量的VAR(1)模型的VECMy1t0.41.5y1,t11ty0.21.5y2,t12t2t在这个例子中,0.61.50.20.5使y1t的系数为1。