1.有哪些大数据分析案例
三个领域大数据应用案例分析
1、无人驾驶汽车。汽车非常昂贵,然而在欧洲,人们只有4%的时间在使用汽车,96%的时间把车停在停车场,这是非常不高效的系统。如果未来普及了无人驾驶的汽车,我们就可以过上另一种生活。
我们将只需要在手机上点一个按键,车就会自己开过来,把我们带去目的地。这种车就像没有驾驶员的出租车,可以被反复使用,效率和可持续性都得到了提升,也避免了资源浪费。
有研究发现,如果自动机动车得到普及,可以减少25%的交通拥堵,减少30%的城市停车场面积。如果北京减少30%的停车场需求,城市生活将大不一样。
2、医疗行业。我们的寿命现在都比较长了,但仍然希望能够更长。现在,我们的医疗水平并不是很好,由于我们忽视了每一个人的个体差异,医生会用通常的方法治疗每一个人。然而,基于大数据,我们可以做精确医疗,通过大数据分析每个人的差异,进行精确的治疗、剂量、用量,让患者更快恢复健康。
3、教育行业。我们要让下一代有能力了解这个世界。然而,因为没有数据,我们难以做到因材施教,所有孩子获得同样的教学,学习同样的书本。低效率的教学就是在浪费脑力、知识和我们解决问题的能力。
如果我们用大数据去分析孩子在发展学习能力时遇到的问题,就可以进行个性化的学习,就可以释放知识和理解力的力量,让每一个孩子充分开发潜能。
-
2.什么是大数据,大数据的典型案例有哪些
随着大数据时代的到来,大数据早已被逐步的运用在我们生活中的方方面面,那么除了之前众所周知的大数据杀熟事件,对于大数据你还了解多少呢?科学运用案例你又知道多少?今天就跟随千锋小编一起来看看。
洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。
google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。
统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。
麻省理工学院利用手机定位数据和交通数据建立城市规划。
梅西百货的实时定价机制,根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
……
种种的案例实在是太多,或许我们永远说不完一样,所以我们就来看一看大数据被科学运用的一个经典案例:
“啤酒与尿布”的故事产生于20世纪90年代的美国沃尔玛超市中,沃尔玛的超市管理人员分析销售数据时发现了一个令人难于理解的现象:在某些特定的情况下,“啤酒”与“尿布”两件看上去毫无关系的商品会经常出现在同一个购物篮中,这种独特的销售现象引起了管理人员的注意,经过后续调查发现,这种现象出现在年轻的父亲身上。
如果这个年轻的父亲在卖场只能买到两件商品之一,则他很有可能会放弃购物而到另一家商店,直到可以一次同时买到啤酒与尿布为止。沃尔玛发现了这一独特的现象,开始在卖场尝试将啤酒与尿布摆放在相同的区域,让年轻的父亲可以同时找到这两件商品,并很快地完成购物;而沃尔玛超市也可以让这些客户一次购买两件商品、而不是一件,从而获得了很好的商品销售收入,这就是“啤酒与尿布” 故事的由来。
当然“啤酒与尿布”的故事必须具有技术方面的支持。1993年美国学者Agrawal提出通过分析购物篮中的商品集合,从而找出商品之间关联关系的关联算法,并根据商品之间的关系,找出客户的购买行为。艾格拉沃从数学及计算机算法角度提 出了商品关联关系的计算方法——Aprior算法。沃尔玛从上个世纪 90 年代尝试将 Aprior 算法引入到 POS机数据分析中,并获得了成功,于是产生了“啤酒与尿布”的故事。
其实大数据,其影响除了以上列举的方面外,它同时也能在经济、政治、文化等方面产生深远的影响,大数据可以帮助人们开启循“数”管理的模式,也是我们当下“大社会”的集中体现,三分技术,七分数据,得数据者得天下。
3.大数据有哪些具体的应用案例
大数据有具体的应用案例还是很多的,比如 :
1、梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
2. Tipp24 AG针对欧洲博彩业构建的下注和预测平台。该公司用KXEN软件来分析数十亿计的交易以及客户的特性,然后通过预测模型对特定用户进行动态的营销活动。这项举措减少了90%的预测模型构建时间。SAP公司正在试图收购KXEN。
3. 沃尔玛的搜索。自行设计了最新的搜索引擎Polaris,利用语义数据进行文本分析、机器学习和同义词挖掘等。根据沃尔玛的说法,语义搜索技术的运用使得在线购物的完成率提升了10%到15%。“对沃尔玛来说,这就意味着数十亿美元的金额。”Laney说。
4. 快餐业的视频分析。该公司通过视频分析等候队列的长度,然后自动变化电子菜单显示的内容。如果队列较长,则显示可以快速供给的食物;如果队列较短,则显示那些利润较高但准备时间相对长的食品。
5. Morton牛排店的品牌认知。当一位顾客开玩笑地通过推特向这家位于芝加哥的牛排连锁店订餐送到纽约Newark机场(他将在一天工作之后抵达该处)时,Morton就开始了自己的社交秀。首先,分析推特数据,发现该顾客是本店的常客,也是推特的常用者。根据客户以往的订单,推测出其所乘的航班,然后派出一位身着燕尾服的侍者为客户提供晚餐。
6. PredPol Inc.。PredPol公司通过与洛杉矶和圣克鲁斯的警方以及一群研究人员合作,基于地震预测算法的变体和犯罪数据来预测犯罪发生的几率,可以精确到500平方英尺的范围内。在洛杉矶运用该算法的地区,盗窃罪和暴力犯罪分布下降了33%和21%。
7. Tesco PLC(特易购)和运营效率。这家超市连锁在其数据仓库中收集了700万部冰箱的数据。通过对这些数据的分析,进行更全面的监控并进行主动的维修以降低整体能耗。
8. American Express(美国运通,AmEx)和商业智能。以往,AmEx只能实现事后诸葛式的报告和滞后的预测。“传统的BI已经无法满足业务发展的需要。”Laney认为。于是,AmEx开始构建真正能够预测忠诚度的模型,基于历史交易数据,用115个变量来进行分析预测。该公司表示,对于澳大利亚将于之后四个月中流失的客户,已经能够识别出其中的24%。
4.怎么写好一份数据分析报告
原发布者:weeeekyamap
数据分析报告格式分析报告的输出是是你整个分析过程的成果,是评定一个产品、一个运营事件的定性结论,很可能是产品决策的参考依据,既然这么重要那当然要写好它了。我认为一份好的分析报告,有以下一些要点:首先,要有一个好的框架,跟盖房子一样,好的分析肯定是有基础有层次,有基础坚实,并且层次明了才能让阅读者一目了然,架构清晰、主次分明才能让别人容易读懂,这样才让人有读下去的欲望;第二,每个分析都有结论,而且结论一定要明确,如果没有明确的结论那分析就不叫分析了,也失去了他本身的意义,因为你本来就是要去寻找或者印证一个结论才会去做分析的,所以千万不要忘本舍果;第三,分析结论不要太多要精,如果可以的话一个分析一个最重要的结论就好了,很多时候分析就是发现问题,如果一个一个分析能发现一个重大问题,就达到目的了,不要事事求多,宁要仙桃一口,不要烂杏一筐,精简的结论也容易让阅者接受,减少重要阅者(通常是事务繁多的领导,没有太多时间看那么多)的阅读心理门槛,如果别人看到问题太多,结论太繁,不读下去,一百个结论也等于0;第四、分析结论一定要基于紧密严禁的数据分析推导过程,不要有猜测性的结论,太主观的东西会没有说服力,如果一个结论连你自己都没有肯定的把握就不要拿出来误导别人了;第五,好的分析要有很强的可读性,这里是指易读度,每个人都有自己的阅读习惯和思维方式,写东西你总会按照自己的思维逻辑来写,你自己觉得很明白,
5.大数据的应用案例以及未来发展趋势
赶超发达国家的重要机遇 半个世纪以来,随着计算机技术全面融入社会生活,信息爆炸已经积累到了一个开始引发变革的程度,不仅使世界充斥着比以往更多的信息,而且其增长速度也在加快。
信息爆炸的学科如天文学和基因学,创造出来大数据这个概念,如今,这个概念几乎应用到了所有人类智力与发展的领域中。21世纪是数据信息大发展的时代,移动互联、社交网络、电子商务等极大拓展了互联网的边界和应用范围,各种数据正在迅速膨胀并变大。
互联网(社交、搜索、电商)、移动互联网(微博)、物联网(传感器、智慧地球)、车联网、GPS、医学影像、安全监控、金融(银行、股市、保险)、电信(通话、短信)都在疯狂产生着数据,大数据时代已经到来。 当前全球和我国大数据都呈现了井喷式爆发性增长,大数据已经渗透到各个行业和业务职能领域,成为重要的生产因素,大数据的演进与生产力的提高有着直接的关系。
其发展特点,一是数据量呈现指数级增长。二是不同行业的大数据内容和开发应用特点各有不同,如证券、投资服务以及银行等金融服务领域拥有最高的平均数字化数据存储量,通信和媒体公司、公共事业公司以及政府等组织也有规模显著的数字化数据存储,这些行业更加具有通过大数据来创造价值的潜力。
三是可以预见到大数据高速增长的现有趋势将继续推动数据增长,例如在各部门和地区之间,企业正在加快收集数据的步伐,推动了传统的事务数据库的增长;医疗卫生等面向消费者的行业中,多媒体的广泛使用刺激了大数据的增长;社交媒体的广泛普及以及物联网中应用的不断创新都进一步推动了大数据不断增长……这些相互交叉的动力刺激了数据的增长,并将继续推动数据池的迅速扩张。 发展大数据及其相关服务业将成为新兴经济体特别是我国在战略性新兴产业领域发挥后发优势赶超发达国家的重要机遇。
只要条件具备,发展中经济体能够利用大数据发挥巨大的潜力。例如,亚洲地区移动手机用户最多,终端设备最多,其中中国设备数量最多,个人位置数据在亚洲已经领先。
此外,在IT资产方面,尽管一些新兴市场组织落后于发达市场,但发展中经济体可以用最新技术跳跃式前进。大数据的应用不仅仅是商务,通过用户行为分析实现精准管理、科学决策和人性化服务是大数据的典型应用,大数据在各行各业特别是公共服务领域具有广阔的应用前景,包括消费行业、金融服务、食品安全、医疗卫生、军事、交通环保、电子商务、气象等。
发展大数据产业机遇可贵潜力巨大。从经济和产业发展维度看大数据及相关产业发展的潜力,我国独特的位势和经济社会高速稳定发展,给大数据及其应用带来了巨大的发展空间。
大数据在我国各领域和不同行业的应用潜力巨大、机遇重大。大数据的核心技术进展和大数据应用有可能带来我国新兴战略性产业发展的新机遇。
信息服务业发展的重要推力 研究表明,大数据是继传统IT之后下一个提高生产率的技术前沿和信息服务业发展的重要推动力。大数据的使用将成为未来提高竞争力、生产力、创新能力以及创造消费者盈余的关键要素。
例如医疗卫生行业,能够利用大数据避免过度治疗、减少错误治疗和重复治疗,从而降低系统成本、提高工作效率,改进和提升治疗质量;公共管理领域,能够利用大数据有效推动税收工作开展,提高教育部门和就业部门的服务效率;零售业领域,通过在供应链和业务方面使用大数据,能够改善和提高整个行业的效率;市场和营销领域,能够利用大数据帮助消费者在更合理的价格范围内找到更合适的产品以满足自身的需求,提高附加值。数据已经成为可以与物质资产和人力资产相提并论的重要的生产要素,伴随着信息化发展,企业将收集更多的信息,从而带来数据呈现指数级的增长。
大数据在同时为商业和消费者创造价值方面有巨大的发展潜力。 大数据应用能够发挥重要的经济作用,不但有利于私人商业活动,更有利于国民经济和公民。
数据可以为世界经济创造重要价值,提高企业和公共部门的生产率与竞争力,并为消费者创造大量的经济剩余。例如,能够富有创造性而有效地利用大数据来提高效率和质量。
麦卡锡公司研究报告指出,预计美国医疗行业每年通过数据获得的潜在价值可超过3000亿美元,能够使得美国医疗卫生支出降低超过8%,充分利用大数据的零售商有可能将其经营利润提高60%以上。通过利用大数据实现政府行政管理方面的运作效率提高。
估计欧洲发达经济体可以节省开支超过1000亿欧元,其中尚不包括可以用来减少欺诈、错误以及税差的影响作用。可以预见的是,随着人们存储、汇聚和组合数据然后利用其结果进行深入分析的能力超过以往,随着越来越尖端技术的软件与不断提高的计算能力相结合,从数据中提取洞见的能力也在显著提高。
大数据及其开发利用能够催生新的产业形态,拓展成为战略性新兴产业的重要组成部分。大数据的生产、整合、开发利用具有广泛的高附加值,可以形成和应用于各行业的关键发现,大数据的有效利用可以创造巨大的潜在价值,许多行业和承担业务职能的组织可以利用大数据提高人力、物力资源的。
6.企业大数据的应用有哪些,举些例子
你好,这个有很多的。从大数据场景应用的横向出发(行业),有各行各业,比如银行、证券、保险、互联网金融、地产、旅游、交通、农业、智慧政府等行业大数据场景应用
从大数据场景应用的纵向出发(功能),可用于精准营销、数据风控、效率提升、决策支持、产品运营等。
这里介绍几个案例:
销售分析
例如通过商业智能系统FineBI平台,可以进行销售、回款、应收款、可售库存、推盘、动态成本、杜邦分析、资金计划等各类细分主题的分析,以地图、环比图、漏斗图等特征图表配以钻取联动显示,较好地从数据中观测销售过程出现的问题。
财务分析
也可以通过建立绩效指标库和行业或标杆指标库作为财务分析的数据源,在绩效考核模型、投资评估模型、财务风险模型、经营分析模型的基础上分别建立资产主题、盈利主题、资金主题、收入主题、成本费用主题、存货主题等。通过这些分析主题对企业进行进度监控和经营预警,从而达到对企业战略的控制。
7.国内的数据挖掘,大数据的案例有哪些
从去年6月接触大数据以来,我阅览了大量关于“大数据”的文章,每天大概是80篇这样一个量级。其中60%实在反复强调大数据概念,30%在借大数据的风炒作自己,剩下10%,有谈技术的,有谈硬件存储的,有谈解决方案,真要问有哪些是接地气并且实实在在大数据解决问题的案例,那是少之又少。
BAT在谈大数据,风投资本在谈大数据,银行/金融/保险在谈大数据,IBM、微软、EMC在谈大数据,专家教授在谈大数据,可是大数据真的让我们的生活变得更美好了吗?作为屌丝青年的我们真正感受到大数据的红利了吗?不管你信不信,我没有感受到。也就是说,大数据落地到普通人身的长征,还没走完。
我们日常生活中使用电脑、平板、手机的数据,被软硬件服务器采集加以使用,而我们却没有因为贡献大数据而让生活更智能,这不符合逻辑。
8.大数据分析的应用实例
2014年6月28日,奥地利研究人员发表研究公报称,通过对多家网上博彩公司长期以来的赔率、各球队的历史表现和球员伤病情况进行大数据分析,他们预测东道主巴西队问鼎世界杯胜算较大。
奥地利因斯布鲁克大学与维也纳经济大学的研究人员推出了一套“博彩共识模型”。根据这套大数据分析模型,巴西队问鼎本届世界杯的几率为22.5%,阿根廷队为15.8%,德国队为13.4%。从数据上看,东道主夺冠的胜算大大超过其他国家队。
巴西世界杯关系
2014巴西世界杯于7月14日凌晨落下帷幕,德国战车1:0战胜阿根廷,第四次捧起大力神杯。
与往届世界杯不同的是:数据分析 成为巴西世界杯赛事外的精彩看点。伴随赛场上球员的奋力角逐,大数据也在全力演绎世界杯背后的分析故事。一向以严谨著称的德国队引入专门处理大数据的足球解决方案,进行比赛数据分析,优化球队配置,并通过分析对手数据找到比赛的“制敌”方式;谷歌、微软、Opta等通过大数据分析预测赛果。。 大数据,不仅成为赛场上的“第12人”,也在某种程度上充当了世界杯的预言帝。
大数据分析邂逅世界杯,是大数据时代的必然发生,而大数据分析也将在未来改变我们生活的方方面面。
转载请注明出处育才学习网 » 大数据报告案例怎么写