1.两条凝血途径中各个凝血因子被激活的顺序
内源性凝血途径:当血管壁损伤,内皮下组织暴露,血液中FXⅡ被内皮下胶原激活为FXⅡa;少量FXⅡa与高分子量肽原(HMWK)结合,使激肽释放酶原(PK)转变为激肽释放酶(K),是K与HMWK可迅速反馈激活大量FXⅡ,FXⅡa则激活FXⅠ,FXⅠa与Ca激活FⅨ,FⅨa与Ca2+、FⅧa、PF3共同形成复合物,使FX激活为FXa。
外源性凝血途径:组织损伤后,释放该因子,在钙离子的参与下,它与因子Ⅶ一起形成1:1复合物。一般认为,单独的因子Ⅶ或组织因子均无促凝活性。
但因子Ⅶ与组织因子结合会很快被活化的因子Ⅹ激活为Ⅶa,从而形成Ⅶa组织因子复合物,后者比Ⅶa单独激活因子Ⅹ增强16000倍。从因子X被激活至纤维蛋白形成,是内源、外源凝血的共同凝血途径。
主要包括凝血酶生成和纤维蛋白形成两个阶段。 凝血酶的生成:即因子Ⅹa、因子Ⅴa在钙离子和磷脂膜的存在下组成凝血酶原复合物,即凝血活酶,将凝血酶原转变为凝血酶。
2.请详细叙述凝血因子I至XIII的名称 作用和 激活顺序
1:纤维蛋白原2:凝血酶原3:组织因子4:钙离子5:前加速素7:前转变素8:抗血友病因子9:血浆凝血激酶10:Stuart-Power因子11:血浆凝血激酶前质12:接触因子13:纤维蛋白稳定因子(高分子激肽原,前激肽释放酶)
3,4,5,8号因子在凝血过程中起辅助因子作用。
内源性凝血因子起始因子是12,外源性凝血因子起始因子是3.
激活顺序是:内源性:12,11,9,10,2,13,1
外源性:3,7,10,2,13,1
3.人体有多少个凝血因子
凝血因子是参与血液凝固过程的各种蛋白质组分。
它的生理作用是,在血管出血时被激活,和血小板粘连在一起并且补塞血管上的漏口。这个过程被称为凝血。
它们部分由肝生成。可以为香豆素所抑制。
为统一命名,世界卫生组织按其被发现的先后次序用罗马数字编号, 有凝血因子Ⅰ,Ⅱ,Ⅲ,Ⅳ,Ⅴ,Ⅶ,Ⅷ,Ⅸ,Ⅹ,Ⅺ,Ⅻ,Ⅻi等,因子XIII以后被发现的凝血因子,经过多年验证,认为对于凝血功能,无决定性的影响,不再列入凝血因子的编号。因子 VI 事实上是活化的第五因子,已经取消因子VI的命名。
主要凝血因子 因子 I, 纤维蛋白原 因子 II, 凝血素 因子 III, 凝血酶原酶 因子 IV, 钙(Ca2+) 因子 因子 V, 促凝血球蛋白原,易变因子 因子 VII, 转变加速因子前体,促凝血酶原激酶原,辅助促凝血酶原激酶 因子 VIII, 抗血友病球蛋白A (AHG A), 抗血友病因子A (AHFA),血小板辅助因子 I, 血友病因子 VIII 或 A, 因子 IX, 抗血友病球蛋白B (AHG B),抗血友病因子B (AHF B),血友病因子 IX 或 B 因子 X, STUART(-PROWER)-F, 自体凝血酶原C 因子 XI, ROSENTHAL因子,抗血友病球蛋白C 因子 XII, HAGEMAN因子, 表面因子 因子 XIII, 血纤维稳定因子 [编辑本段]辅助凝血因子共同凝血 FITZGERALD因子 FLETCHER因子 (激肽释放酶原) von-Willebrand-因子 被取消资格的凝血因子 因子 VI, 促凝血球蛋白:其实是活化后的第五因子。 这些因子共同作用,会导致凝血。
如果一种或多种凝血因子缺失,会导致“血友病”: 血液病,血友病。 列举 同义语 缩写符号 血浆浓度 在血清中 贮存稳定性 参与凝血途径 Ⅰ 纤维蛋白原 Fg 2000-4000 无 稳定 共同 Ⅱ 凝血酶原 200 有10%-12% 稳定 共同 Ⅲ 组织凝血激酶 TF 外源 Ⅴ 前加速素 5-10 无 不稳定 共同 Ⅶ 前转变素 2 有 稳定 外源 Ⅷ 抗血友病因子 AHG 〈10 无 不稳定 内源 Ⅸ 血浆凝血激酶 PTC 3-4 有 较稳定 内源 Ⅹ Stuart Power因子 6-8 有 稳定 共同 Ⅺ 血浆凝血激酶前质 PTA 4 有 稳定 内源 Ⅻ 接解因子 HF 2.9 有 稳定 内源 PK 激肽释放酶原 PK 1.5-5.0 有 稳定 内源 HMWK 高分子量激肽原 HMWK 7 有 稳定 内源 ⅩⅢ 纤维蛋白稳定因子 FSF 25 无 稳定 共同 [编辑本段]临床应用 PT延长 通常认为PT延长代表凝血因子Ⅱ、Ⅴ、Ⅶ、Ⅹ的活性低于正常或抗凝物质的存 在。
肝功能轻度受损,PT仍可正常,它仅在肝实质细胞严重损害时才明显延长。仅 以PT判断肝病患者凝血功能异常和肝细胞损伤程度是不够的,如同时测定凝血因子 的活性,可能更有价值。
肝病与凝血因子Ⅱ 大多数研究认为急性肝炎和慢性肝炎轻度患者,凝血因子Ⅱ活性正常或轻度下 降;慢性肝炎中度、重度和肝硬化患者,凝血因子Ⅱ活性水平明显下降,说明它的 降低程度与肝细胞损害程度密切相关。有研究认为异常凝血酶原(protein-Ⅱin ,PIVKA-Ⅱ)可用于原发性肝癌的诊断,部分AFP阴 性的原发性肝癌患者PIVKA-Ⅱ阳性,还有研究认为小肝癌患者PIVKA-Ⅱ阳性率高于 AFP[8],它还有助于原发性肝癌的病情变化及疗效判断[9],在临床上应联合检测 AFP与PIVKA-Ⅱ。
凝血因子Ⅴ 研究显示凝血因子Ⅴ活性在肝功能失代偿或严重肝病时才减少,故认为它是判 凝血因子 断肝病患者预后的良好指标。Izumi等[10]研究显示:对乙酰氨基酚诱导的需肝移 植的暴发性肝功能衰竭患者,凝血因子Ⅴ活性。
4.凝血过程的基本特征
血液凝固是凝血因子按一定顺序激活,最终使纤维蛋白原转变为纤维蛋白的过程,可分为:凝血酶原激活物的形成;凝血酶形成;纤维蛋白形成三个基本步骤,即:
1.凝血酶原激活物的形成
凝血酶原激活物为Xa、V、Ca2+和PF3(血小板第3因子,为血小板膜上的磷脂)复合物,它的形成首先需要因子x的激活。根据凝血酶原激活物形成始动途径和参与因子的不同,可将凝血分为内源性凝血和外源性凝血两条途径。
(1)内源性凝血途径:由因子Ⅻ活化而启动。当血管受损,内膜下胶原纤维暴露时,可激活Ⅻ为Ⅻa,进而激活Ⅺ为Ⅺa.Ⅺa在Ca2+存在时激活Ⅸa,Ⅸa再与激活的Ⅷa、PF3、Ca2+形成复合物进一步激活X.上述过程参与凝血的因子均存在于血管内的血浆中,故取名为内源性凝血途径。由于因子Ⅷa的存在,可使Ⅸa激活Ⅹ的速度加快20万倍,故因子Ⅷ缺乏使内源性凝血途径障碍,轻微的损伤可致出血不止,临床上称甲型血友病。
(2)外源性凝血途径:由损伤组织暴露的因子Ⅲ与血液接触而启动。当组织损伤血管破裂时,暴露的因子Ⅲ与血浆中的Ca2+、Ⅶ共同形成复合物进而激活因子Ⅹ。因启动该过程的因子Ⅲ来自血管外的组织,故称为外源性凝血途径。
2.凝血酶形成
在凝血酶原激活物的作用下,血浆中无活性的因子Ⅱ(凝血酶原)被激活为有活性的因子Ⅱa、(凝血酶)。
3.纤维蛋白的形成
在凝血酶的作用下,溶于血浆中的纤维蛋白原转变为纤维蛋白单体;同时,凝血酶激活ⅩⅢ为ⅩⅢa,使纤维蛋白单体相互连接形成不溶于水的纤维蛋白多聚体,并彼此交织成网,将血细胞网罗在内,形成血凝块,完成血凝过程。
血液凝固是一系列酶促生化反应过程,多处存在正反馈作用,一旦启动就会迅速连续进行,以保证在较短时间内出现凝血止血效应。
望采纳
5.凝血因子的凝血酶原激活
整个凝血酶的激活途径如图2所示。
当血液与带负电荷的胶原蛋白(皮肤血管外壁)或异体表面(如高岭土、玻璃等)接触时,因子Ⅻ就由酶原激活成Ⅻa,后者除能激括因子Ⅺ外,又同时使血浆前舒缓激肽释放酶激活。激活后的激肽释放酶在高分子量激肽原的促进下反过来又进一步使因子Ⅻ激活,但此时不再是接触激活而是肽键水解激活(见蛋白水解酶),使成为因子Ⅻf。
这是一正反馈效应,不论Ⅻa或Ⅻf都具有相同的活力。激活后的XIa在Ca2+存在下接着又使因子Ⅸ激活。
因子Ⅻ是由596个氨基酸残基所组成,因子Ⅺ是由两个亚基所组成,每一亚基含607个氨基酸残基,其结构与血浆激肽释放酶很类似。因子Ⅸ由416个氨基酸残基所组成,激活时释放出一肽段,形成由二硫键连结的两条肽链。
与磷脂结合的部位在轻链,而酶的催化活性部位则在重链。活化的因子Ⅸa在Ca2+与磷脂存在下与因子Ⅷ形成复合物,使因子Ⅹ激活为因子Ⅹa。
在正常生理条件下磷脂由血小板提供,在此反应中因子Ⅸa起酶催化作用,而因子Ⅷ只是起调节作用,由于它也能与因子Ⅹ结合,从而使局部的底物浓度增高。事实上单独因子Ⅸa也能使因子Ⅹ激活,但在因子Ⅷ参与下反应速度可增加数千倍以上。
因子Ⅷ还需有因子Ⅹa及凝血酶的激活而成为因子Ⅷ',这里也是一正反馈效应。因子Ⅷ是一分子量达百万以上的糖蛋白,高盐浓度下解离成分子量约20万的亚基。
若体内由于基因缺陷,因子Ⅷ欠缺或无活性,在临床上就表现出先天性血友病。因此因子Ⅷ又称为抗血友病因子。
因子Ⅹ是由448个氨基酸残基所组成,激活时释放出一肽段,形成由二硫键连结的两条肽链。它与因子Ⅸ相似,与磷脂及因子Ⅴ的结合部位在轻链,而酶的催化活性部位在重链。
激活后的因子Ⅹ与Ca2+、磷脂及因子Ⅴ共同形成一复合物,后者最终使凝血酶原激活为凝血酶。因子Ⅴ的性质与因子Ⅷ有很多相似之处,它不是起酶的催化作用,而是加速凝血酶原的激活,当因子Ⅴ与磷脂同时存在时激活过程可加速2万倍。
同样因子Ⅴ也可被凝血酶激活成Ⅴ',成为另一正反馈效应。因子Ⅴ也是一大分子量的糖蛋白,由分子量约30万的亚基所组成,在体内极不稳定,容易被体内蛋白C(也是一种丝氨酸蛋白酶)所破坏,因此称为不稳定因子。
凝血酶原(即因子Ⅱ)由 581个氨基酸残基所组成,当被因子Xa复合物激活时,几乎同时在肽键Arg(精274)-Thr(苏275)及Arg(精322)-Ile(异亮323)处水解,并自N端释放出分子量约3万的肽段(残基1~274),形成由两条肽链通过二硫键连接的凝血酶。激活后的凝血酶又能催化降解凝血酶原,在残基Arg(156)-Ser(157)处的肽键水解,释放出A肽段并形成新凝血酶原-S,后者就不易再被Xa所激活。
有人认为片段A通过Ca2+及磷脂与因子Xa相结合,如果此肽段被水解除去后,新凝血酶原-S就丧失与因子Xa结合的能力,即使它仍含有可被因子Χa专一水解的肽键,反应也极不易进行。这是凝血酶原激活过程的一个重要的负反馈调节机制,避免了体内由于产生过量凝血酶而引起血栓。
当凝血酶原激活时从N端释放的肽段,大致上可分为两个区域,即A肽段(残基1~156)及S-肽段(残基157~274)。此两肽段在氨基酸组成上特别是二硫键的位置非常相似,其中有31个氨基酸残基完全相同,在构型上似乎各自成为独立的单位,被称为“环饼”结构。
一般认为此两环形结构能分别与因子Xa相结合,因而可在两个肽键处(残基274~275,322~323)同时水解而激活成凝血酶。如果只有残基 274处的肽键被因子Xa水解,生成的新凝血酶原-T则不能再激活成凝血酶。
体内组织损伤时释放出因子Ⅲ,也称为组织因子。在Ca2+存在下它能与血液中已活化的因子Ⅶ形成复合物,就能使因子Ⅹ激活,此后就与内源性激活途径的反应步骤相同。
通过外源性途径血液凝固在10多秒钟内即可完成,而通过内源性途径则需数分钟。 因子Ⅲ为一膜糖蛋白,由263个氨基酸残基所组成,存在于血管内皮细胞,分布于体内各组织,在肺、脑、胎盘中更丰富。
如果细胞膜受到损失它就随之释放。因子Ⅲ的作用类似于因子Ⅷ及Ⅴ,也是调节因子,不同的是,由于存在于膜上,因而无需血小板的磷脂参与。
因子Ⅶ激活因子Ⅹ的机理类似于因子Ⅸ。上述内源或外源系统中各凝血因子Ⅻ、Ⅺ、Ⅸ、Ⅹ、Ⅶ,凝血酶以及与凝血系统有关的激肽释放酶、蛋白C都属于丝氨酸蛋白酶,它们活性部位附近的氨基酸排列顺序都与胰蛋白酶极为相似,不同的是它们都是糖蛋白。
因子Ⅶ是由406个氨基酸残基所组成,激活时不释放出肽段,其结构与因子Ⅸ、Ⅹ很相似。凝血因子与维生素K在凝血酶原近N端的肽段中有一种特殊氨基酸,即γ-羧基谷氨酸。
由于在同一谷氨酸侧链中含有两个羧基,与Ca2+的亲合力就特别强。这样,凝血酶原就可通过Ca2+再与磷脂结合,这是因子Ⅹ激活凝血酶原所必需的。
若动物给以维生素K的拮抗剂,如双羟香豆素,则在凝血酶原分子中原有的γ-羧基谷氨酸残基又被正常谷氨酸所取代,同时凝血机能也受到损害,由此认为维生素K是作为γ羧化酶的辅酶,在凝血酶原分子中总共有10个γ-羧基谷氨酸,它们都集中于N端32个氨基酸残基。