1.怎样笔算平方根,立方根
笔算开立方(转贴): 今年在某次物理竞赛中忘了带计算器,需要计算开立方。
当时不知道怎么笔算,所以只好一位一位地试。因此,我便想研究出一种开立方的笔算方法(我知道现在有,但是苦于找不到,所以只好自己来了)。
在刚开始研究是我不知道该如何入手,所以就去找了初二时候的代数书,里面有开平方笔算法和推导过程。它是这么写的: 在这里,我“定义”a^b=a的b次方。
(10a+b)^2 = 100a^2+20ab+b^2 = 100a^2+b(20a+b) a代表的是已经计算出来的结果,b代表的是当前需要计算的位上的数。在每次计算过程中,100a^2都被减掉,剩下b(20a+b)。
然后需要做的就是找到最大的整数b'使b'(20a+b')<=b(20a+b)。 因此,我就照着书里的方法,推导开立方笔算法。
(10a+b)^3 = 1000a^3+300a^2*b+30a*b^2+b^3 = 1000a^3+b[300a^2+b(30a+b)] 如果每次计算后都能减掉1000a^3的话,那么剩下的任务就是找到最大的整数b',使b'[300a^2+b'(30a+b')]<=b[300a^2+b(30a+b)]。 于是,我就设计了一个版式。
下面就开始使用这个版式来检验开立方笔算法。 例如:147^3=3176523 一开始,如下图所示,将3176523从个位开始3位3位分开。
(3'176'523) 第一步,我们知道,1^3 < 3 < 2^3,所以,第一位应该填1。 1^3 = 1,3 - 1 = 2,余2,再拖三位,一共是2176。
接下来这一步就比较复杂了。因为我水平有限,我现在还不能把它改造得比较好。
依照“b[300a^2+b(30a+b)]”,所以: 1^2*300=300,1*30=30,如图上所写。 第二位就填4,所以上图3个空位都填4。
然后(34*4+300)*4=1744,2176-1744=432,再拖三位得432523。 然后就照上面一样, 14^2*300=58800,14*30=420,如上图所写。
第三位就填7,所以上图下边3个空位都填7。 然后(427*7+58800)*7=432523,432523-432523=0,到此开立方结束。
在我以后的一些实践中,发现越往后开,300*a^2与b(30a+b)的差距就越大,寻找b的工作就越容易,因为结果中有一项是300*a^2*b。 徒手开n次方根的方法: 原理:设被开方数为X,开n次方,设前一步的根的结果为a,现在要试根的下一位,设为b, 则有:(10*a+b)^n-(10*a)^n<=c(前一步的差与本段合成);且b取最大值 用纯文字描述比较困难,下面用实例说明: 我们求 2301781.9823406 的5次方根: 第1步:将被开方的数以小数点为中心,向两边每隔n位分段(下面用'表示);不足部分在两端用0补齐; 23'01781.98234'06000'00000'00000'。
. 从高位段向低位段逐段做如下工作: 初值a=0,差c=23(最高段) 第2步:找b,条件:(10*a+b)^n-(10*a)^n<=c,即b^5<=23,且为最大值;显然b=1 差c=23-b^5=22,与下一段合成, c=c*10^n+下一段=22*10^5+01781=2201781 第3步:a=1(计算机语言赋值语句写作a=10*a+b),找下一个b, 条件:(10*a+b)^n-(10*a)^n<=c,即:(10+b)^5-10^5<=2201781, b取最大值8,差c=412213,与下一段合成, c=c*10^5+下一段=412213*10^5+98234=41221398234 第4步:a=18,找下一个b, 条件:(10*a+b)^n-(10*a)^n<=c,即:(180+b)^5-180^5<=41221398234, b取最大值7 说明:这里可使用近似公式估算b的值: 当10*a>>b时,(10*a+b)^n-(10*a)^n≈n*(10*a)^(n-1)*b,即: b≈41221398234/n/(10*a)^(n-1)=41221398234/5/180^4≈7.85,取b=7 以下各步都更加可以使用此近似公式估算b之值 差c=1508808527;与下一段合成, c=c*10^5+下一段=1508808527*10^5+06000=150880852706000 第5步:a=187,找下一个b, 条件:(10*a+b)^n-(10*a)^n<=c,即: (1870+b)^5-1870^5<=150880852706000, b取最大值2,差c=28335908584368;与下一段合成, c=c*10^5+下一段=2833590858436800000 第6步:a=1872,找下一个b, 条件:(10*a+b)^n-(10*a)^n<=c,即: (18720+b)^5-18720^5<=2833590858436800000, b取最大值4,差c=376399557145381376;与下一段合成, c=c*10^5+下一段= 。
.. 最后结果为:18.724。
以上是转贴一网站的内容,我自己前半部分有些明白,后半部分还不明白,但我可以确定以上的解答过程才是正确的,而绝不是一个数的3倍.述求平方根的方法,称为笔算开平方法,用这个方法可以求出任何正数的算术平方根,它的计算步骤如下: 1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11'56),分成几段,表示所求平方根是几位数; 2.根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3); 3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数(竖式中的256); 4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商(3*20除 256,所得的最大整数是 4,即试商是4); 5.用商的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(20*3+4)*4=256,说明试商4就是平方根的第二位数); 6.用同样的方法,继续求平方根的。
2.写出平方根和立方根的异同点
1、平方根的意义:如果一个数的平方等于a,这个数就叫做a的平方根(或二次方根)。
注意:这样的数常常有两个。 2、平方根的性质: (1)一个正数有两个平方根,它们互为相反数;如9的平方根是±3。
(2)0的平方根是0本身; (3)负数没有平方根。 3.平方根的表示方法: 正数a的平方根表示为“±” 4.算术平方根:正数a的正的平方根也叫做a的算术平方根。
记作。0的平方根0,也叫做0的算术平方根。
5.≥0(当 a。
3.初中的平方根和立方根怎么开方
开平方、开立方都是乘方的逆运算。
平方根就是开平方的结果,它往往有正负两个结果,例如求下列数的平方根:4,-4,9,-9,其结果都是正负2或正负3。有时求算术平方根,只有一个正数,如二次根号下4=2,二次根号下(-2)的平方=2,绝不等于-2或正负2。而负的二次根号下时,结果就只有负的。
就目前的知识水平而言,在开平方时,被开方数只能是正数或者零,不能为负数,但可以是某个负数的偶数次方。如二次根号下(-9)的4次方=81,不是-81,也不是正负81。
将来你到了高中,数的概念进一步扩展后,学习复数时,你会知道,负数也能开平方,那时你学习到一个新概念:复数单位i。i的平方是-1,也即对-1开平方,能得-i,那么-4开平方,能得结果是-2i。
立方根就是开三次方根,正数的立方根是正数,负数的立方根为负数,0的立方根是0。
被开方数可正可负可零,开立方根的结果与三次根号下的数的符号一致
4.平方根和立方根的公式
原发布者:孤独的守望着1
一、说教材 本节课是九年制义务教育课程标准试验教材八年级上册15章“整式的乘除”中第2节“乘法公式”中的第一课时。这节课是学生在已经学习了多项式乘以多项式的基础上,通过探究得出公式,可以提高计算能力,也为后面的因式分解打下基础。 根据新课标的精神,要改变学生的学习方式,实现“课堂素质化、素质课堂化”,我采取“先学后教,当堂训练”的教学模式,这也是我们学校正在推行培养学生综合素质的一种教学模式。 (一)教学目标(依据新课标的理念,人人学有价值的数学,人人都能获得必须的数学,不同的人在数学上有不同的发展。为此,我制定如下教学目标) 1、通过自主探究理解平方差公式意义,掌握平方差公式的结构特征,会用几何图形说明公式的意义,并能正确的运用平方差公式。 2、培养学生观察、分析、比较能力,逻辑推理能力及语言表达能力,提高探索能力。 3、积极参加探索活动,在此过程中培养学生勇于挑战的勇气和战胜困难的自信心。 (二)重难点、关键 重点:平方差公式及应用。 难点:平方差公式结构特点及灵活应用。 关键:正确分析公式的结构特征。 二、学情分析 学生在刚接触了多项式乘以多项式的乘法计算之后,从一般的计算中抽象出特殊形式的式子及结果写成平方差公式,通过对它的学习和研究,丰富了学习内容,也拓宽了学生的视野,在学生探究交流的同时建立数学模型。 三、说教法和学法 我采用“先学后教,当堂训练”