1. 用作文怎么写可燃冰
无污染的新能源——可燃冰
今天我读了一篇文章,才知道原来有一种洁净,无污染的新能源——可燃冰。
这种可燃冰是天然气(甲烷类)被包进水分子中,在海底低温与压力下结晶形成的。这种白色的固体在常温下可释放64立方米甲烷气体和0。8立方米淡水,而且几乎不产生任何污染。现在正全力开采这种可燃冰。
但在普及过程当中,困难出会随之而来。首先是开采的困难,现在开采的方法有热解法、降压法和置换法等,但无一不是既费时、效率又不高。其次就是开采这种新能源一定会受到一定的阻力,那些石油大国怎么会眼白白地看着自己的利益受损?这种新能源一但开采成功,势必很快取代石油,这样靠石油起家的国家将会失去主要的财富来源,因此他们一定会百般阻拦。退一步说,即使这种能源成功开发出来,但这也必定成为出界各国争夺的目标,谁掌握新能源,谁就会掌握未来世界的命脉,这怎么不引起争夺呢?但这一来也一定起许多负面影响:各国的反目、战争等。这些隐患都是不可忽视的。
虽然如此,但在能源日益减少的今天,新能源开发是我们唯一的出路,但愿新能源能尽早普及世界,为世界打开一条新的道路!
2. 可燃冰主要成分是什么
“可燃冰”的主要成分是甲烷(CH4)
天然气水合物(Natural Gas Hydrate,简称Gas Hydrate),也称为可燃冰、甲烷水合物、甲烷冰、天然气水合物、“笼形包合物”(Clathrate),分子式为:CH4·8H2O。
可燃冰中甲烷占80%~99.9%,可直接点燃。
形成天然气水合物的主要气体为甲烷,对甲烷分子含量超过99%的天然气水合物通常称为甲烷水合物(Methane Hydrate)。每单位晶胞内有两个十二面体(20 个端点因此有 20 个水分子)和六个十四面体(tetrakaidecahedral)(24 个水分子)的水笼结构。
可燃冰的形成与海底石油、天然气的形成过程相仿,而且密切相关。埋于海底地层深处的大量有机质在缺氧环境中,厌气性细菌把有机质分解,最后形成石油和天然气(石油气)。其中许多天然气又被包进水分子中,在海底的低温与压力下又形成“可燃冰”。这是因为天然气有个特殊性能,它和水可以在温度2~5摄氏度内结晶。
1立方米可燃冰可转化为164立方米的天然气和0.8立方米的水。科学家估计,海底可燃冰分布的范围约4000万平方公里,占海洋总面积的10%,海底可燃冰的储量够人类使用1000年。
3. 可燃冰的化学式是怎样的
天然气水合物,也称作甲烷水合物、甲烷冰或可燃冰,有机化合物,化学式CH₄。
可燃冰为固体形态的水于晶格(水合物)中包含大量的甲烷。最初人们认为只有在太阳系外围那些低温、常出现冰的区域才可能出现。
但后来发现在地球上许多海洋洋底的沉积物底下,甚至地球大陆上也有可燃冰的存在,其蕴藏量也较为丰富。甲烷气水包合物作为石油、天然气的新时代替代能源而备受期待。
甲烷气水包合物存在于低温高压的环境,在海洋浅水生态圈中是常见的成分,他们通常出现在深层的沉淀物结构中,或是在海床处露出。 甲烷气水包合物据推测是因地理断层深处的气体迁移,以及沉淀、结晶等作用,于上升的气体流与海洋深处的冷水接触所形成。
扩展资料: 可燃冰在高压下,甲烷气水包合物在18°C的温度下仍能维持稳定。一般的甲烷气水化合物组成为1莫耳的甲烷及每5.75莫耳的水,然而这个比例取决于多少的甲烷分子“嵌入”水晶格各种不同的包覆结构中。
据观测的密度大约在0.9 g/cm³。一升的甲烷气水包合物固体,在标准状况下,平均包含168 升的甲烷气体。
甲烷形成一种结构一型水合物,其每单位晶胞内有两个十二面体(20个端点因此有20个水分子)和六个十四面体(tetrakaidecahedral,24个水分子)的水笼结构。其水合值(hydratation value)20可由MAS NMR来求得。
甲烷气水包合物频谱于275 K和3.1 MPa下记录,显示出每个笼形都反映出峰值,且气态的甲烷也有个别的峰值。 甲烷气水包合物受限于浅层的岩石圈内(即< 2000 m深)。
此外,发现在一些必要条件下,惟独在极地大陆的沉积岩,其表面温度低于0 °C,或是在水深超过300 m,深层水温大约2 °C的海洋沉积物底下。 大陆区域的蕴藏量已确定位在西伯利亚和阿拉斯加800 m深的砂岩和泥岩床中。
海生型态的矿床似乎分布于整个大陆棚,且可能出现于沉积物的底下或是沉积物与海水接触的表面。 他们甚至可能涵盖更大量的气态甲烷。
甲烷气水包合物估计蕴藏量为天然气的2~10倍,却因为开采困难,目前商业化的进程还在不断探索中。 参考资料来源:百度百科——天然气水合物。