1. 怎样理解波动方程
波动方程 或称波方程是一种重要的偏微分方程,它通常表述所有种类的波,例如声波,光波和水波。
它出现在不同领域,例如声学,电磁学,和流体力学。波动方程的变种可以在量子力学和广义相对论中见到。
历史上,象乐器那样的振动弦问题曾被很多科学家研究,包括达朗贝尔, 欧拉 , 丹尼尔·伯努利 ,和 拉格朗日 。 对于一个标量quantity u的波动方程的一般形式是: { \partial^2 u \over \partial t^2 } = c^2 \nabla^2u 这里c通常是一个固定 常数 ,也就是波的传播速率(对于空气中的声波大约是330米/秒, 参看音速)。
对于弦的振动,这可以有很大的变化范围:在螺旋弹簧上(slinky),它可以慢到1米/秒。但若c作为波长的 函数 改变,它应该用 相速度 代替: v_\mathrm = \frac{\omega}. 注意波可能叠加到另外的运动上(例如声波的传播在 气流 之类的移动媒介中)。
那种情况下,标量u会包含一个马赫因子 [1] (对于沿着流运动的波为正,对于 反射波 为负)。 u = u(x,t), 是振幅,在特定位置x和特定时间t的波强度的一个测量。
对于 空气 中的声波就是局部气压,对于振动弦就使从静止位置的位移。\nabla^2 是相对于位置 变量 x的 拉普拉斯算子 。
注意u可能是一个标量或向量。 对于一维标量波动方程的一般解是由 达朗贝尔 给出的: u(x,t) = F(x-ct) + G(x+ct) 其中F和G为任意函数,分别对应于前进行波,和后退行波。
要决定F和G必须考虑两个初始条件: u(x,0)=f(x) u_{,t}(x,0)=g(x) 这样达朗贝尔公式变成了: u(x,t) = \frac{f(x-ct) + f(x+ct)} + \frac \int_^{x+ct} g(s) ds 在经典的意义下,如果f(x) \in C^k并且g(x) \in C^则u(t,x) \in C^k. 一维情况的波动方程可以用如下方法推导:想象一个 质量 为m的小 质点 的队列,互相用长度h的 弹簧 连接。弹簧的硬度为k : 这里u (x)测量位于x的质点偏离平衡位置的距离。
对于位于x+h的质点的运动方程是: m{\partial^2u(x+h,t) \over \partial t^2}= kLINK 其中u(x)的时间依赖性变成显式的了。
2. 怎么把振动方程转化波动方程
首先你得知道波传播的速度,因为振动速度和波传播的速度是不一样的,二者之间没有任何关系。
知道了波的传播速度之后,确定原点,确定初相位记为w0。
波速*振动周期=波长记为x,振动方程的最大位移是波的H振幅记为A则波的方程可以写成Asin(nx+w0)
波动方程的本质是振动方程,形式上自然一样,他们的区别就在于,振动方程描述的是一个质点在任意时刻偏离平衡位置的位移,而波动方程描述的是任意一个质点在任意时刻偏离平衡位置的位移,这个任意时刻用变量t来表示,任意位置用变量x来表示,求解方法完全是求解振动方程的方法,首先确定一个参考点,一般选择坐标原点,根据初始条件写出它的振动方程,然后在右侧任选一点,坐标为x,这一点的振动方程和原点的振动方程对比,振幅一样,角频率一样,唯一不一样的是初相位,而相位差可以根据这两个点的距离来确定,即相位差等于距离除以波长再乘以2PI(圆周率),同时,沿着波的传播方向相位越来越小。记住,波动方程就是振动方程。函数图如下:
3. 谁知道“薛定谔方程”怎么写,怎么用
E.薛定谔提出的量子力学基本方程 。
建立于 1926年。它是一个非相对论的波动方程。
它反映了描述微观粒子的状态随时间变化的规律,它在量子力学中的地位相当于牛顿定律对于经典力学一样,是量子力学的基本假设之一。设描述微观粒子状态的波函数为Ψ(r,t),质量为m的微观粒子在势场U(r,t)中运动的薛定谔方程为。
在给定初始条件和边界条件以及波函数所满足的单值、有限、连续的条件下,可解出波函数Ψ(r,t)。由此可计算粒子的分布概率和任何可能实验的平均值(期望值)。
当势函数U不依赖于时间t时,粒子具有确定的能量,粒子的状态称为定态。定态时的波函数可写成式中Ψ(r)称为定态波函数,满足定态薛定谔方程,这一方程在数学上称为本征方程,式中E为本征值,是定态能量,Ψ(r)又称为属于本征值E的本征函数。
量子力学中求解粒子问题常归结为解薛定谔方程或定态薛定谔方程。薛定谔方程广泛地用于原子物理、核物理和固体物理,对于原子、分子、核、固体等一系列问题中求解的结果都与实际符合得很好。
薛定谔方程仅适用于速度不太大的非相对论粒子,其中也没有包含关于粒子自旋的描述。
4. 【波动方程和振动方程的区别
波动方程的本质是振动方程,形式上自然一样,他们的区别就在于,振动方程描述的是一个质点在任意时刻偏离平衡位置的位移,而波动方程描述的是任意一个质点在任意时刻偏离平衡位置的位移,这个任意时刻用变量t来表示,任意位置用变量x来表示,求解方法完全是求解振动方程的方法,首先确定一个参考点,一般选择坐标原点,根据初始条件写出它的振动方程,然后在右侧任选一点,坐标为x,这一点的振动方程和原点的振动方程对比,振幅一样,角频率一样,唯一不一样的是初相位,而相位差可以根据这两个点的距离来确定,即相位差等于距离除以波长再乘以2PI(圆周率),同时,沿着波的传播方向相位越来越小.记住,波动方程就是振动方程.。
5. 大学物理中怎么由y
为了弄清楚波动方程的物理意义,我们作进一步的分析。
在波动方程中含有x和t两个自变量,如果x给定(即考察该处的质点),那么位移y就只是t的周期函数,这时这个方程表示x处质点在各不同时刻的位移,也就是该质点的振动方程,方程的曲线就是该质点的振动曲线。下图(a)中描出的即一列简谐波在x=0处质点的振动曲线。
如果波动方程中的t给定,那么位移y将只是x的周期函数,这时方程给出的是t时刻波线上各个不同质点的位移。波动中某一时刻不同质点的位移曲线称为该时刻波的波形曲线,因而t给定时,方程就是该时刻的波形方程。
下图(b)中描出的即是t=0时一列沿x方向传播的简谐波的波形曲线。无论是横波还是纵波,它们的波形曲线在形式上没有区别,不过横波的位移指的是横向位移,表现的是峰谷相间的图形;纵波的位移指的是纵向位移,表现的是疏密相间的图形。
在一般情况下,波动方程中的x和t都是变量。这时波动方程具有它最完整的含义,表示波动中任一质点的振动规律:波动中任一质点的相位随时间变化,每过一个周期T相位增加,任一时刻各质点的相位随空间变化,距离波源每远一个波长,相位落后一个2π。
(a)x=0处质点的振动曲线 (b)t=0时波的波形曲线振动曲线和波形曲线还应该注意波动方程、振动方程和波形方程在形式上的明显区别,以免引起概念上的混淆。波动方程描述波动中任一质点的振动规律,它有两个自变量,其函数形式表现为;振动方程描述某一点的运动,只有一个自变量t,函数形式表现为形式;波形方程表示的是某一时刻各质点的位移,也只有一个自变量,表现为形式。
反映在曲线表示上,要注意振动曲线和波形曲线的区别。振动曲线是y-t曲线而波形曲线是y-x。
振动曲线的(时间)周期是T,波形曲线的(空间)周期是波长l。在振动曲线中质点的相位随时间逐步增加,而在波形曲线中质点的相位是沿波的传播方向逐点减少。
6. 波动方程的方程形式
对于一个标量quantity u的波动方程的一般形式是:{ \partial^2 u \over \partial t^2 } = c^2 \nabla^2u
这里c通常是一个固定常数,也就是波的传播速率(对于空气中的声波大约是330米/秒, 参看音速)。对于弦的振动,这可以有很大的变化范围:在螺旋弹簧上(slinky),它可以慢到1米/秒。但若c作为波长的函数改变,它应该用相速度代替:
v_\mathrm = \frac{\omega}.
注意波可能叠加到另外的运动上(例如声波的传播在气流之类的移动媒介中)。那种情况下,标量u会包含一个马赫因子(对于沿着流运动的波为正,对于反射波为负)。
u = u(x,t), 是振幅,在特定位置x和特定时间t的波强度的一个测量。对于空气中的声波就是局部气压,对于振动弦就使从静止位置的位移。\nabla^2 是相对于位置变量x的拉普拉斯算子。注意u可能是一个标量或向量。
如,一维波动方程:
二维波动方程:
三维波动方程: