1.高数夹逼定理具体题目怎么运用
求lim<n→∞>[1/(n³+1) + 4/(n³+4)+。+n²/(n³+n²)]
用夹逼定理
1/(n³+n²)+2²/(n³+n²)+…+n²/(n³+n²)≤1/(n³+1)+2²/(n³+2²)+…+n²/(n³+n²)≤1/(n³+1)+2²/(n³+1)+…+n²/(n³+1)
(1+2²+…+n²)/(n³+n²)≤1/(n³+1)+2²/(n³+2²)+…+n²/(n³+n²)≤(1+2²+…n²)/(n³+n²)
n(n+1)(2n+1)/[6(n³+n²)]≤1/(n³+1)+2²/(n³+2²)+…+n²/(n³+n²)≤n(n+1)(2n+2)/[6(n³+n²)]
lim<n→∞>n(n+1)(2n+1)/[6(n³+n²)]=1/3
lim<n→∞>n(n+1)(2n+2)/[6(n³+n²)]=1/3
所以lim<n→∞>1/(n³+1)+2²/(n³+2²)+…+n²/(n³+n²)=1/3
2.谁能分步骤解释下夹逼定理怎么用
F(x)与G(x)在Xo连续且存在相同的极限A,limF(x)=limG(x)=A 则若有函数f(x)在Xo的某领域内恒有F(x)≤f(x)≤G(x) 则当X趋近Xo有limF(x)≤limf(x)≤limG(x)进而有 A≤limf(x)≤A f(Xo)=A 这是夹逼定理的理论内容。
简单的说~函数A>B,函数B>C函数A的极限是X函数C的极限也是X那么函数B的极限就一定是X。举例:设an,bn,为收敛数列,且:当n趋于无穷大时,数列an,bn,极限均为:a. 若存在N,使得当n>N时,都有an≤cn≤bn,则数列cn收敛,且极限为a。
3.高数夹逼定理具体题目怎么运用
求lim<n→∞>[1/(n³+1) + 4/(n³+4)+。+n²/(n³+n²)]
用夹逼定理
1/(n³+n²)+2²/(n³+n²)+…+n²/(n³+n²)≤1/(n³+1)+2²/(n³+2²)+…+n²/(n³+n²)≤1/(n³+1)+2²/(n³+1)+…+n²/(n³+1)
(1+2²+…+n²)/(n³+n²)≤1/(n³+1)+2²/(n³+2²)+…+n²/(n³+n²)≤(1+2²+…n²)/(n³+n²)
n(n+1)(2n+1)/[6(n³+n²)]≤1/(n³+1)+2²/(n³+2²)+…+n²/(n³+n²)≤n(n+1)(2n+2)/[6(n³+n²)]
lim<n→∞>n(n+1)(2n+1)/[6(n³+n²)]=1/3
lim<n→∞>n(n+1)(2n+2)/[6(n³+n²)]=1/3
所以lim<n→∞>1/(n³+1)+2²/(n³+2²)+…+n²/(n³+n²)=1/3