1.如何证明零点定理
证明:不妨设
f(b)>0,令
E={x|f(x)≤0,x∈[a,b]}。
由f(a)<0知E≠Φ,且b为E的一个上界,于是根据确界存在原理,
存在ξ=supE∈[a、b],
下证f(ξ)=0(注意到f(a)≠0,f(b)≠0,故此时必有ξ∈(a、b)),事实上,
(i)若f(ξ)<0,则ξ∈[a、b),由函数连续的局部保号性知
存在δ>0,对x1∈(ξ,ξ+δ):f(x)<0→存在x1∈E:x1>supE,
这与supE为E的上界矛盾;
(ii)若f(ξ)>0,则ξ∈(a,b],仍由函数连续的局部保号性知
存在δ>0,对x1∈(ξ-δ,ξ):f(x)>0→存在x1为E的一个上界,且x1<;ξ,
这又与supE为E的最小上界矛盾。
综合(i)(ii),即推得f(ξ)=0。
扩展资料
用罗尔定理证明中值等式的思路与步骤
在确定使用罗尔定理来证明中值等式时,可考虑如下基本思路与步骤:
(1) 变换预证等式:化简、移项,将等式所有项移动到左侧,使得右侧等于0,即具有G(ξ)=0的形式.
(2) 构造辅助函数F(x):将等式中的中值符号,如ξ,替换为变量x,将其转换为函数G(x)在中值的函数值,然后计算、构造该函数的一个原函数F(x)(即导数为G(x)的函数). 在原函数F(x)无法直接计算得到的情况下。
可以考虑引入不增加导函数G(x)零点的辅助函数h(x)乘以G(x)来构造原函数F(x),即问题转换为寻找G(x)h(x)的原函数F(x). 常用的辅助函数h(x)有自然常数为底的指数函数ex,不包含原点区间的幂函数xn等,使得F'(x)=G(x)或者F'(x)=G(x)h(x)。
参考资料来源:搜狗百科-零点定理
2.高等数学零点定理
1、F(x)=f(x)--f(x+1/2),则F(0)=f(0)-f(1/2),F(1/2)=f(1/2)-f(1),因此F(0)+F(1/2)=0,若F(0)=F(1/2)=0,则命题成立,否则F(0)和F(1/2)必有一个大于0,一个小于0,由零点定理,存在c,使得F(c)=0,即f(c)=f(c+1/2)。
2、类似。F(x)=f(x)-f(x+1/n),则F(0)+F(1/n)+F(2/n)+。+F(1--1/n)=f(0)-f(1/n)+f(1/n)-f(2/n)+。+f(1--1/n)--f(1/n)=0,因此或者F(0),。。。。,F(1--1/n)都为0,此时命题成立;
或者其中有大于0的点,也有小于0的点,由零点定理得存在c,使得F(c)=0,故结论成立。
3.零点定理和介值定理
零点定理 与 介值定理
其实质是讲函数连续性的。 只要是连续函数,问题就明了了。 连续在于一个 x 有一个y值的对应性。
而“零点”、“介质” ,都是指函数定义域上[x轴上]一个点 所对应的函数值是 0或某个特殊值。x轴上的这个对应点,也在某些情况下称作根。
如f(x)=c找介值点,相当于对函数 f(x)-c 来说,就是找零点了。即寻找让函数=0的x轴上的点。
另外注:“至少有一个”表存在性的问题;
“唯一的”常用求导的方法来通过判断单调性的趋势,确定唯一性。
在此基础上,当某个导函数,是连续的,或说某个原函数是二阶可导的,那么中值定理可以理解为导函数的介值问题或零点问题。